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Abstract. This is the second, and last paper in which we address the behavior of
oriented first passage percolation on the hypercube in the limit of large dimensions.
We prove here that the extremal process converges to a Cox process with exponential
intensity. This entails, in particular, that the first passage time converges weakly to
a random shift of the Gumbel distribution. The random shift, which has an explicit,
universal distribution related to modified Bessel functions of the second kind, is the sole
manifestation of correlations ensuing from the geometry of Euclidean space in infinite
dimensions. The proof combines the multiscale refinement of the second moment method
with a conditional version of the Chen-Stein bounds, and a contraction principle.

1. Introduction and main results

The model we consider is constructed as follows. We first embed the n-dimensional
hypercube in Rn: for e1, .., en the standard basis, we identify the hypercube as the graph
Gn ≡ (Vn, En), where Vn = {0, 1}n and En ≡ {(v, v + ej) : v, v + ej ∈ V, j ≤ n}. The set
of shortest (directed) paths connecting diametrically opposite vertices, say 0 ≡ (0, .., 0)
and 1 ≡ (1, .., 1), is given by

Σn ≡ {π ∈ Vn+1 : π1 = 0, πn+1 = 1, (πi, πi+1) ∈ En,∀i ≤ n}. (1.1)

A graphical rendition is given in Figure 1 below.
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FPP IN THE HYPERCUBE 2

Figure 1. The 10-dimensional hypercube (left), and two oriented connect-
ing paths (right): blue edges are common to both paths, whereas paths do
not overlap on red edges.

Let now (ξe)e∈E be a family of independent standard exponentials, i.e. exponentially
distributed random variables with parameter 1, and assign to each oriented path π ∈ Σn

its weight

Xπ ≡
∑
k≤n

ξ[π]k ,

where [π]i = (πi, πi+1) is the i-th edge of the path.
A key question in first passage percolation, FPP for short, concerns the so-called first

passage time,

mn ≡ min
π∈Σn

Xπ , (1.2)

namely the smallest weight of connecting paths. The limiting value of mn to leading order
has been settled by Fill and Pemantle [8], who proved that

lim
n→∞

mn = 1, (1.3)

almost surely.
The ”law of large numbers” (1.3) naturally raises questions on fluctuations and weak

limits, and calls for a description of the paths with minimal weight. As a first step towards
this goal we presented in [11] an alternative, ”modern” approach to (1.3) much inspired by
the recent advances in the study of Derrida’s random energy models (see [9] and references
therein) and which relies on the hierarchical approximation to the FPP. In this companion
paper we bring the approach to completion by establishing the full limiting picture, i.e.
identifying the weak limit of the extremal process

Ξn ≡
∑
π∈Σn

δn(Xπ−1) .

Theorem 1 (Extremal process). Let Ξ be a Cox process with intensity Zex−1dx, where
Z is distributed like the product of two independent standard exponentials. Then

lim
n→∞

Ξn = Ξ, (1.4)
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weakly. In particular, it follows for the first passage time mn that

lim
n→∞

P(n(mn − 1) ≤ t) =

∞∫
0

x

e1−t + x
e−xdx . (1.5)

It will become clear in the course of the proof, see in particular Remark 7 below, that
the assumption on the distribution of the edge-weights is no restriction: any distribution
in the extremality class of the exponentials (i.e. any distribution with similar behavior
for small values, to leading order) will lead to the same limiting picture and weak limits.
Although not needed, we also point out that the distribution of the mixture is given by
f(z) = 2z2K0(2

√
z), with K0 a modified Bessel function of the second kind.

What lies behind the onset of the Cox processes is a decoupling whose origin can be
traced back to the high-dimensional nature of the problem at hand. Indeed, the following
mechanism, depicted in Figure 2 below, holds with overwhelming probability in the limit
n → ∞ first, and r → ∞ next: Walkers connecting 0 to 1 through paths of minimal
weight may share at most the first r steps of their journey. Yet, and crucially: whenever
they depart from one another (’branch off’), they cannot meet again until they lie at
distance at most r from the target. If meeting happens, they must continue on the same
path (no further branching is possible). The long stretches during which optimal paths
do not overlap are eventually responsible for the Poissonian component of the extremal
process, whereas the mixing is due to the relatively short stretches of tree-like (early and
late) evolution of which the system keeps persistent memory. The picture is thus very
reminiscent of the extremes of branching Brownian motion [BBM], see [2] and references
therein. More specifically, the extremal process of FPP on the hypercube can be (partly)
seen as the ”gluing together” of two extremal processes of BBM in the weak correlation
regime as studied by Bovier and Hartung [3, 4], see also [5, 6, 7].

Acknowledgements. It is our pleasure to thank Ralph Neininger for much needed
guidance in the field of contraction methods and distributional fixed points.

2. Strategy of proof

The approach amounts to exploiting the insights on the physical mechanisms sum-
marized in Figure 2. Specifically, we will check convergence of intensity and avoidance
functions of the extremal process. To see how this comes about, we lighten notation by
setting, for A ⊂ R a generic subset and π an oriented path,

Iπ(A) ≡ δn(Xπ−1)(A), and Ξn(A) ≡
∑
π∈Σn

Iπ(A) .

We then claim that with Z as in Theorem 1, and A a finite union of bounded intervals:

• Convergence of the intensity:

limEΞn(A) −→
n→∞

E
∫
A

Zex−1dx =

∫
A

ex−1dx . (2.1)
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Figure 2. Four extremal paths. Remark in particular the tree-like evolu-
tion close to 0 and 1 (blue edges) and the (comparatively) longer stretch
where paths share no common edge (red). This should be contrasted with
the low-dimensional scenario: ”loops” in the core of the hypercube, as de-
picted in Figure 1, become less and less likely as the dimension grows.

• Convergence of the avoidance function:

P (Ξn(A) = 0) −→
n→∞

P (Ξ(A) = 0) = E
[
exp

(
−Z

∫
A

ex−1dx

)]
. (2.2)

Theorem 1 then immediately follows in virtue of Kallenberg’s Theorem [10, Theorem
4.15]. The proof of the claim on the intensity is rather straightforward: it only requires
tail-estimates which we now state for they will be constantly used throughout the paper.
(The simple proof may be found in [11, Lemma 5]).

Lemma 2. Let {ξi}i≤n be independent standard exponentials, and set Xn ≡
∑n

i=1 ξi.
Then

P (Xn ≤ x) = (1 +K(x, n))
e−xxn

n!
, (2.3)

for x > 0 and with the error-term satisfying 0 ≤ K(x, n) ≤ exx/(n+ 1).

Armed with these estimates we can proceed to the short proof of (2.1). Here and below,
we will always consider sets of the form A = (−∞, a] , a ∈ R. This is enough for our
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purposes since the general case follows by additivity. It holds:

EΞn(A) =
∑
π∈Σn

P (n(Xπ − 1) ≤ a)

= n!P (n(Xπ∗ − 1) ≤ a) (symmetry, π∗ ∈ Σn is arbitrary)

= n!
{

1 +K
(

1 +
a

n
, n
)}

e−1− a
n

((
1 +

a

n

)+
)n

(n!)−1 (Lemma 2)

= (1 + on(1))e−1+a

= (1 + on(1))

∫
A

ex−1dx,

(2.4)

as claimed. Convergence of the intensity (2.1) is thus already settled.

Contrary to convergence of the intensity, convergence of avoidance functions (2.2) will
require a fair amount of work. This will be split in a number of intermediate steps. The
main ingredient is a conditional version of the Chen-Stein bounds:

Theorem 3 (Conditional Chen-Stein Method). Consider a probability space (Ω,F ,P), a
sigma-algebra F ⊂ F , a finite set I, and a family (Xi)i∈I of Bernoulli random variables
issued on this space. Let furthermore

W =
∑
i∈I

Xi and λ =
∑
i∈I

E(Xi|F) .

Finally, consider a random variable Ŵ with the property that its law conditionally upon

F is Poisson, i.e. L(Ŵ |F) = Poi(λ). It then holds:

dTV |F(W, Ŵ ) ≤
∑
i∈I

E(Xi|F)2 +
∑
i∈I

∑
j∈Ni

(E(Xi|F)E(Xj|F) + E(XiXj|F)) , (2.5)

where
dTV |F(W, Ŵ ) ≡ sup

A∈F

(
PW (A|F)− PŴ (A|F)

)
is the total variation distance conditionally upon F . Finally, Ni, i ∈ I is a collection of
conditionally dissociating neighborhoods, i.e. with the property that Xi and {Xj : j ∈
(Ni ∪ {i})c} are independent, conditionally upon F .

Theorem 3 is a variant of the classical Chen-Stein method which is tailor-suited to our
purposes. Since we haven’t found in the literature any similar statement, we provide the
rather short proof in the appendix for completeness.

In order to prove convergence of the avoidance functions, we will apply Theorem 3 by
conditioning on the left- and rightmost regions of Figure 2, namely those regions where
tree-like evolutions eventually kick in. Specifically, in order to apply the conditional
Chen-Stein, we make the following choices:

a) I ≡ Σn, the set of admissible (oriented) paths connecting 0 to 1 .
b) F is the sigma-algebra generated by the weights of edges at distance at most r

from 0 or 1, to wit

F = Fr,n ≡ σ(ξe : e = (u, v) ∈ E,min{d(u,0), d(v,0)} ∈ [0, r) ∪ [n− r, n)) .
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c) The family of Bernoulli r.v.’s is given by (Iπ(A))π∈Σn
.

d) The (random) Poisson-parameter is

λ = λr,n(A) ≡
∑
π∈Σn

E [Iπ(A) | Fr,n]

e) The dissociating neighborhoods are given, for π ∈ Σn, by

Nπ ≡ {π′ ∈ Σn \ {π} : ∃i ∈ {r + 1, .., n− r} s.t. [π]i = [π′]i}

A first, fundamental observation concerns item d), namely the weak convergence of the
Poisson-parameter in the double limit n→∞ first and r →∞ next. This is an instructive
warm-up computation which we now explain.

Denote the set of all pairs of paths leading r-steps away from the start/end respectively,
and which can be part of an oriented path from 0 to 1 by

Vr,n ={(x, y) ∈ V r+1 × V r+1 : x1 = 0, d(xr+1,0) = r, d(y1,1) = r, yr+1 = 1,

y1 − xr+1 ∈ V, (xi, xi+1), (yi, yi+1) ∈ E,∀i ≤ r}.
(2.6)

Note that y1−xr+1 ∈ V is equivalent to there being a directed path from 0 to 1 containing
x and y. For (x, y) ∈ Vr,n we define the set of paths connecting x and y by

Σx,y ≡{π′ ∈ V n−2r+1 : ∃π ∈ Σn s.t. ([π]i)i≤r = ([x]i)i≤r and

([π]i)r<i≤n−r = ([π′]i)r<i≤n−r, ([π]i)i>n−r = ([y]i)i>n−r}.
(2.7)

By definition,

λr,n(A) =
∑
π∈Σn

P
(
n(Xπ − 1) ≤ a

∣∣∣Fr,n)
=

∑
(x,y)∈Vr,n

∑
π′∈Σx,y

P

(
n−2r∑
i=1

ξ[π′]i ≤ 1 +
a

n
−

r∑
i=1

ξ[x]i + ξ[y]i

∣∣∣Fr,n) . (2.8)

Shorten

Xx,y ≡
r∑
i=1

ξ[x]i + ξ[y]i .

By Lemma 2, and since |Σx,y| = (n− 2r)!, the r.h.s. of (2.8) equals∑
(x,y)∈Vr,n

(
1 +K(1 +

a

n
−Xx,y, n− 2r)

)
exp

(
−1− a

n
+Xx,y

)((
1 +

a

n
−Xx,y

)+
)n−2r

.

(2.9)
By the tail-estimates from Lemma 2, the following holds

K
(

1 +
a

n
−Xx,y, n− 2r

)
≤ 2e2

n− 2r
,

for all non-zero summands, and n ≥ a. Remark that there are O(n2r) such summands,
while r and a are fixed: one easily checks that dropping all summands where Xx,y >
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(lnn)2/n only causes a deterministically vanishing error, hence

(2.9) = (1 + on(1))

on(1) + e−1
∑

(x,y)∈Vr,n

1
{Xx,y≤ (lnn)2

n
}

exp

(
(n− 2r) ln

(
1 +

a

n
−Xx,y

)+
)

= (1 + on(1))

on(1) + e−1+a
∑

(x,y)∈Vr,n

exp (−nXx,y)


= (1 + on(1))

on(1) + e−1+a
∑

(x,y)∈Vr,n

exp−n
r∑
i=1

(
ξ[x]i + ξ[y]i

) .

(2.10)
the second step by Taylor-expanding the logarithm around 1 to first order, and the third
by definition.

We now address the sum on the r.h.s. of (2.10), on which we perform the aforementioned
double limit n → ∞ first and r → ∞ next. The upshot is summarized in Proposition
4 below, whose proof — via a contraction argument — is deferred to Section 3.1. To
formulate, we need some additional notation: for π1, .., πi−1 ∈ N and i ≤ r we denote by(

ηπ1,..,πi−1,πi

)
πi∈N

, and
(
η̃π1,..,πi−1,πi

)
πi∈N

independent Poisson point processes [PPP] with intensity 1R+dx, and set

Zr ≡
∑
π∈Nr

exp

(
−

r∑
j=1

ηπ1π2...πj

)
, Z̃r ≡

∑
π∈Nr

exp

(
−

r∑
j=1

η̃π1π2...πj

)
. (2.11)

Proposition 4. (The double weak-limit).

• n-convergence: the following weak limit, to fixed r, holds:

lim
n→∞

∑
(x,y)∈Vr,n

exp−n
r∑
l=1

(
ξ[x]l + ξ[y]l

)
= Zr × Z̃r .

• r-convergence: Zr and Z̃r weakly converge, as r → ∞, to independent standard
exponentials.

The n-convergence is a key ingredient in Figure 2 above. Indeed, remark that both

limits Zr and Z̃r are constructed outgoing from hierarchical1 superpositions of PPP: this
accounts for the somewhat surprising fact that close to 0 and 1 only tree-like structures
contribute to the extremal process in the mean field limit.

Proposition 4 and (2.10) steadily imply convegence of the Poisson-parameter:

1Superpositions of PPP such as those involved in (2.11) are ubiquitous in the Parisi theory of mean
field sping glasses, see [9] and references, where they are referred to as Derrida-Ruelle cascades. Although
no knowledge of the Parisi theory is assumed/needed, our approach to the oriented FPP in the limit of
large dimensions heavily draws on ideas which have recently crystallised in that field.
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Corollary 5. With the above notations,

lim
r→∞

lim
n→∞

λr,n(A) = Z

∫
A

ex−1dx,

weakly.

We now come back to the main task of proving (2.2), convergence of the avoidance
functions. The line of reasoning goes as follows: recalling that Ξn(A) =

∑
π∈Σn

Iπ(A), we
write

|P (Ξn(A) = 0)− P (Ξ(A) = 0)|
= |EP (Ξn(A) = 0 | Fr,n)− EP (Ξ(A) = 0 | Z)|
≤ |EP (Ξn(A) = 0 | Fr,n)− P (Poi (λr,n(A)) = 0 | Fr,n)|

+ |EP (Poi (λr,n(A)) = 0 | Fr,n)− EP (Ξ(A) = 0 | Z)| ,

(2.12)

by the triangle inequality. By convexity, one has

|EP (Ξn(A) = 0 | Fr,n)− P (Poi (λr,n(A)) = 0 | Fr,n)|
≤ E |P (Ξn(A) = 0 | Fr,n)− P (Poi (λr,n(A)) = 0 | Fr,n)|
≤ EdTV,Fr,n (Ξn(A),Poi (λr,n(A)))

=: CS(r, n), say.

(2.13)

Furthemore, by definition

|EP (Poi (λr,n(A)) = 0 | Fr,n)− EP (Ξ(A) = 0 | Z)|

=
∣∣∣E(e−λr,n(A) − e−Z

∫
A e

x−1dx
)∣∣∣

=: P(r, n), say.

(2.14)

It thus follows from (2.12), (2.13) and (2.14) that

|P (Ξn(A) = 0)− P (Ξ(A) = 0)| ≤ CS(r, n) + P(r, n). (2.15)

The second term is easily seen to vanish thanks to the convergence of the Poisson-
parameter: it follows from Corollary 5 and weak limit that

lim
r→∞

lim
n→∞

P(r, n) = 0. (2.16)

We finally claim that the first term in (2.15), the ”Chen-Stein term”, also vanishes in the
considered double-limit, to wit:

lim
r→∞

lim
n→∞

CS(r, n) = 0 . (2.17)

This claim is proved in Section 3.2 as an application of the conditional Chen-Stein method.
Combining (2.16) and (2.17) we thus obtain convergence of the avoidance function:

since this was the last missing ingredient, our main Theorem 1 follows.
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3. Proofs

3.1. The double weak-limit. The goal of this section is to prove Proposition 4. We
first address the n-convergence, which states that

lim
n→∞

∑
(x,y)∈Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
= Zr × Z̃r, (3.1)

weakly, where Zr, Z̃r are defined in (2.11). The idea here is to enlarge the set of paths
over which the sum is taken, as this enables a useful decoupling. Precisely, consider the
set of directed paths of length r from 0,

V←r,n = {x ∈ V r+1 : x1 = 0, d(xr+1,0) = r, [x]i ∈ E,∀i ≤ r} , (3.2)

and respectively to 1:

V→r,n = {y ∈ V r+1 : yr+1 = 1, d(y1,1) = r, [y]i ∈ E,∀i ≤ r} . (3.3)

One easily checks that ∣∣V←r,n × V→r,n \ Vr,n∣∣ = O(n2r−1) . (3.4)

We split the sum over the larger subset into a sum over Vr,n and a ”rest-term”:∑
(x,y)∈V→r,n×V←r,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
=

=
∑

(x,y)∈Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)

+
∑

(x,y)∈(V→r,n×V←r,n)\Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
.

(3.5)

and claim that the term on the r.h.s. vanishes in probability. Indeed, by a simple com-
putation involving the moment generating function of the exponential distribution,

E

∣∣∣∣∣∣
∑

(x,y)∈(V→r,n×V←r,n)\Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)∣∣∣∣∣∣ =
∣∣(V→r,n × V←r,n) \ Vr,n

∣∣ (n+ 1)−2r

(3.4)−→ 0, n→∞.

(3.6)

It thus follows from Markov’s inequality that the contribution of paths in (V→r,n×V←r,n)\Vr,n
is irrelevant for our purposes: the weak limit when summing over Vr,n, and that when
summing over V→r,n×V←r,n coincide, provided one of them exists. On the other hand, the sum
over the enlarged set of paths ”decouples” into two independent identically distributed
terms:∑
(x,y)∈V→r,n×V←r,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
=
∑
x∈V→r,n

exp

(
−n

r∑
l=1

ξ[x]l

) ∑
y∈V←r,n

exp

(
−n

r∑
l=1

ξ[y]l

)
.

(3.7)
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The n-convergence will therefore follow as soon as we show that

Zr,n ≡
∑
x∈V→r,n

exp

(
−n

r∑
l=1

ξ[x]l

)
−→
n→∞

∑
π∈Nr

exp

(
r∑
l=1

−ηπ1π2...πj

)
≡ Zr (3.8)

holds weakly. This will be done by induction on r. The base-case r = 1 is addressed in

Lemma 6. Consider η ≡
∑

i∈N δηi a PPP(1R+dx) and independent standard exponentials
(ξi)i∈N. It then holds:

n∑
i=1

δξin −→
n→∞

η (3.9)

weakly. Furthermore, the following weak limit holds:
n∑
i=1

exp (−ξin) −→
n→∞

∑
i∈N

exp (−ηi) . (3.10)

Remark 7. In virtue of Lemma 6, Theorem 1 holds for any choice of edge-weights falling
in the universality class of the exponential distribution, i.e. for which (3.9) holds.

Proof of Lemma 6. Claim (3.9) is a classical result in extreme value theory. We omit
the elementary proof. As for the second claim: it is steadily checked (e.g. by Markov’s
inequality) that the sum on the l.h.s. of (3.10) is almost surely finite. In order to prove
(3.10) it thus suffices to compute the Laplace transform of the two sums. For t ∈ R+,
since the ξ′s are independent, we have:

E exp−t
n∑
i=1

e−ξin = E
(
ete
−ξ1n
)n

=

1 +

+∞∫
0

e−x(ete
−xn − 1)dx

n

=

1 +
1

n

+∞∫
0

e−u/n(ete
−u − 1)du

n

,

(3.11)

the second equality by change of variable. But e−u/n(ete
−u − 1) ≤ (ete

−u − 1), which is
integrable, hence by dominated convergence we have that the r.h.s. of (3.11) converges,
as n ↑ ∞, to the limit

exp

 +∞∫
0

(e−te
−x − 1)dx

 = E exp−t
∑
i∈N

e−ηi , (3.12)

where the last equality follows by a simple computation: (3.10) is therefore settled. �

For the n-convergence, we will work with the Prohorov metric, which we recall is defined
as follows: for µ, ν ∈M1(R) two probability measures, the Prohorov distance is given by

dP (µ, ν) ≡ inf {ε > 0 : µ(A) ≤ ν(Aε) + ε, ∀A ⊂ R closed} ,

where Aε ≡ {x ∈ R : d(A, x) ≤ ε} is the ε-neighborhood of the set A. It is a classical
fact that the Prohorov distance metricizes weak convergence. We also recall the following
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implication, as it will be used at different occurences: for two r.v.s X, Y , slightly abusing
notation, one has:

P(|X − Y | > ε) ≤ ε⇒ dP(X, Y ) ≤ ε . (3.13)

In fact, P(|X − Y | > ε) ≤ ε implies that for A ⊂ R,

P(X ∈ A) ≤ P(X ∈ A, |X − Y | ≤ ε) + P(|X − Y | > ε) ≤ P(Y ∈ Aε) + ε (3.14)

from which dP(X, Y ) ≤ ε follows, settling (3.13).

We now proceed to the induction step: we thus assume that Zr,n converges weakly to
Zr for some r ∈ N and show how to deduce that Zr+1,n converges weakly to Zr+1. First,
we observe that by definition

Zr+1,n =
∑
i≤n

exp
(
−nξ(0,ei)

) ∑
x∈V→r+1,n:x2=ei

exp

(
−n

r+1∑
l=2

ξ[x]l

)

=
∑
i≤n

exp
(
−nξ(0,ei)

)
× Zei

r,n ,

(3.15)

changing notation for the second sum to lighten exposition.
We claim that it suffices to consider small ξ-values in the first sum. Precisely, let ε > 0,

set Kε = −2 ln ε, and restrict the first sum to those ξ′s such that ξ(0,ei) ≤ Kε/n. We claim
that this causes only an ε-error in Prohorov distance, to wit

sup
n,r

dP

(
Zr+1,n,

∑
i≤n

1{ξ(0,ei)≤Kε/n}
e−nξ(0,ei) × Zei

r,n

)
≤ ε. (3.16)

In fact, for the contribution of large ξ′s, it holds:

P

(∑
i≤n

1{ξ(0,ei)>Kε/n}
e−nξ(0,ei) × Zei

r,n > ε

)

≤ 1

ε
E

[∑
i≤n

1{ξ(0,ei)>Kε/n}
e−nξ(0,ei) × Zei

r,n

]
=
n

ε
E
[
1{ξ(0,ei)>Kε/n}

e−nξ(0,ei)
]
× E

[
Zei
r,n

]
,

(3.17)

the first step by Markov inequality, and the second by independence. Computing explicitly
the above expectations yields that the r.h.s. of (3.17) is at most

n

ε

∞∫
Kε/n

e−(n+1)xdx× (n− 1)!

(n− r − 1)!
(n+ 1)−r ≤ exp−Kε

ε
= ε, (3.18)

since Kε = −2 ln ε. This settles (3.16).
Consider now the permutation p of {1, .., n} such that (ξp(i))i≤n is increasing, and set

K̂ε ≡ dKε/εe. We clearly have

Zn,r+1 ≥
∑
i≤K̂ε

e−nξp(i)Z
ep(i)
r,n . (3.19)
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for ≥ K̂ε. On the other hand,

P

Zn,r+1 ≥
∑
i≤K̂ε

e−nξp(i)Z
ep(i)
r,n + ε


≤ P

(
Zn,r+1 ≥ ε+

∑
i≤n

1{ξ(0,ei)≤Kε/n}
e−nξ(0,ei) × Zei

r,n

)

+ P

∑
i≤K̂ε

e−nξp(i)Z
ep(i)
r,n ≤

∑
i≤n

1{ξ(0,ei)≤Kε/n}
e−nξ(0,ei) × Zei

r,n


(3.20)

While the first term is at most ε by (3.17) and (3.18), the second term equals

P
(

#{i ≤ n : ξ(0,ei) ≤ Kε/n} > K̂ε

)
≤ nP(ξ(0,e1) ≤ Kε/n)

/
K̂ε ≤ Kε

/
K̂ε ≤ ε ,

(3.21)

the first estimate by Markov inequality and the second using (1− e−x) ≤ x.
All in all, in virtue of (3.13), the above considerations imply that

sup
n,r

dP

Zn,r+1,
∑
i≤K̂ε

e−nξp(i)Zep(i)
r,n

 ≤ 2ε . (3.22)

A fixed, finite number of paths therefore carries essentially all weight: we will now show
that these paths are, with overwhelming probability, organised in a ”tree-like fashion”.
Towards this goal, we go back to the original formulation∑

i≤K̂ε

e−nξp(i)Zei
r,n =

∑
i≤K̂ε

e−nξp(i)
∑

x∈V→r+1,n:x2=ep(i)

exp

(
−n

r+1∑
l=2

ξ[x]l

)
. (3.23)

Note that any directed path of length r+ 1 with first step (0, ei), can only share an edge
with another path starting with (0, ej), i 6= j if it goes in the direction ej at some point.
By this observation for i 6= j and i, j ∈ {1, .., n}
|{x ∈ V→r+1,n : x2 = ei,∃x′ ∈ V→r+1,n s.t. x′2 = ej and x ∩ x′ 6= ∅}| = O(nr−1) (3.24)

holds. Combining this fact with the observation

E exp

(
−n

r+1∑
l=2

ξ[x]l

)
= (n+ 1)−r (3.25)

we see that the total contribution of such paths converges in probability to zero, by
Markov inequality, and swapping these intersecting summands for copies of themselves
that are independent of paths with different start edge does not change the weak limit.
The weak limit of (3.28) therefore coincides with the weak limit of∑

i≤K̂ε

exp
(
−nξp(i)

) ∑
x∈V→r,n−1

exp

(
−n

r∑
l=1

ξ
(p(i))
[x]l

)
(3.26)
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where ξ
(p(i))
[x]l

= ξ[x]l if [x]l cannot be part of a path starting with ep(j) for some j 6= i with

j ≤ K̂ε. On the other hand, the ξ
(p(i))
[x]l

’s are exponentially distributed and independent

of each other for different p(i) and or different [x]l as well as independent of all (ξe)e∈En .
Finally, we realize that replacing

exp

(
−n

r∑
l=1

ξ
(p(i))
[x]l

)
by exp

(
−(n− 1)

r∑
l=1

ξ
(p(i))
[x]l

)
(3.27)

causes, by the restriction argument (2.10), an error which vanishes in probability. Col-
lecting all changes and estimates, we have thus shown that the distribution of Zr+1,n is
at most 2ε+ on(1)-Prohorov distance away from the weak limit of∑

i≤K̂ε

exp
(
−nξp(i)

)
Z

(i)
r,n−1, (3.28)

where Z
(i)
r,n−1, i ∈ N are independent copies of Zr,n−1. By assumption Zr,n−1 converges

weakly to Zr and by Lemma 6 the smallest finitely many nξ’s converge weakly to the first
that many points of a PPP(1R+dx). We conclude that the Prohorov distance of Zr+1,n

and ∑
i≤K̂ε

exp (−η̂i)Z(i)
r , (3.29)

is at most by an in n vanishing sequence larger than 2ε. Checking using Markov inequality
that the contibution of i > K̂ε is vanishing in probability gives that

dP (L(Zr+1,n), (LZr+1))→ 0 (3.30)

has to hold as n→∞. This finishes the induction, and the proof of the n-convergence is
thus settled.

�
We move to the proof of the second claim of Proposition 4, the r-convergence. As

mentioned, this will be done via a contraction argument on the space P2 of probability
measures on R with finite second moment. To this end, let (ηi)i∈N be a PPP(1R+dx).
Define

T : P2 → P2,

µ 7→ L

(∑
i∈N

e−ηiXi

)
,

(3.31)

where (Xi)i∈N are independent and identically µ-distributed, and independent of η. Note
that T is well-defined, i.e., we have that Tµ has a finite second moment for all µ ∈ P2

by applying the triangle inequality, E[
∑
i∈N

e−2ηi ] = 1/2 and independence. Moreover, since

E[
∑

i∈N e
−ηi ] = 1 the map T does not change the first moment. Hence, for the subset

P2,1 :=

{
µ ∈ P2 :

∫
x dµ = 1

}
the restriction of T to P2,1 maps to P2,1. By construction, it holds that

L(Zr+1) = TL(Zr). (3.32)
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We now endow P2 with the minimal L2-distance `2, also called Wasserstein distance of
order 2: for µ, ν ∈ P2 this is defined by

`2(µ, ν) = inf{‖V −W‖2 : L(V ) = µ,L(W ) = ν},

where the infimum is over all random variables V,W on a joint probability space with
the respective distributions. Convergence in `2 implies weak convergence, (P2, `2) and
(P2,1, `2) are complete metric spaces. For these topological properties and the existence
of optimal couplings used below see, e.g., Ambrosio, Gigli and Savaré [1] or Villani [12].
Within the present setting, in order to prove the r-convergence it suffices to prove that

• The restriction of T to P2,1 is a strict `2-contraction.
• The standard exponential distribution is a fixed point of T restricted to P2,1.

We remark that T as a map on P2 has infinitely many fixed points and that our argument
below also implies that these fixed points are exactly the exponential distributions with
arbitrary parameter, their negatives, and the Dirac measure in 0. Uniqueness of the fixed
point on P2,1 is immediate by Banach fixed point theorem and the strict contraction
property.

Contractivity goes as follows. For µ, ν ∈ P2,1, let (Xi, Yi)i∈N be a sequence of indepen-
dent optimal `2-couplings, which are also independent of η; optimal `2-couplings means
here that the pair (Xi, Yi) has marginal distributions µ and ν, and that it attains the
infimum in the definition of `2. It then holds:

`2(Tµ, Tν)2 ≤ E

(∑
i∈N

e−ηi(Xi − Yi)

)2
 . (3.33)

Remark that the off-diagonal terms on the r.h.s. above vanish, since Xi − Yi has zero
expectation: using this, we thus obtain

`2(Tµ, Tν)2 ≤ E

[∑
i

e−2ηi

]
E
[
(X1 − Y1)2

]
=

1

2
`2 (µ, ν)2 , (3.34)

the last step by optimality of the coupling. This implies that the restriction of the map
T to P2,1 is an `2-contraction.

It thus remains to prove that the standard exponential distribution is the fixed point of
T in P2,1. This can be checked via Laplace transformation: consider independent standard
exponentials X1, X2, ... which are also independent of η. For t > 0,

E

[
exp

(
−t

∞∑
i=1

e−ηiXi

)]
= E

[
exp

(
−
∞∑
i=1

ln
(
1 + te−ηi

))]

= exp

 ∞∫
0

1

1 + te−x
− 1dx

 =
1

1 + t
,

(3.35)

which is the Laplace transform of a standard exponential. This implies ii). The r-
convergence therefore immediately follows from Banach fixed point theorem.

�
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3.2. Vanishing of the Chen-Stein term. The goal here is to prove (2.17), namely that

lim
r→∞

lim
n→∞

CS(r, n) = 0 . (3.36)

This requires some additional notation. Let

Σn,r ≡
{

(π, π′) ∈ Σn × Σn : π, π′ have at least a common edge e,

e = (u, v) ∈ E, {d(u,0), d(v,0)} ∈ [r, n− r)
}
.

For paths (π, π′) ∈ Σn × Σn, we denote by π ∧ π′ their overlap, i.e. the number of edges
shared by both paths. Working out the conditional Chen-Stein bound (2.5), we get

CS(r, n) =EdTV,Fr,n (Ξn(A),Poi (λn(A)))

≤
∑
π∈Σn

E
[
E[Iπ(A)|Fr,n]2

]
+
∑
?

E [E[Iπ(A)|Fr,n]E[Iπ′(A)|Fr,n]]

+
∑
?

E [E[Iπ(A)Iπ′(A)|Fr,n]] ,

(3.37)

where
∑

? denotes summation over all (π, π′) ∈ Σn,r : 1 ≤ π ∧ π′ ≤ n− 2. We will prove
that all three terms on the r.h.s. of (3.37) vanish in the limit n → ∞ first, and r → ∞
next. As the proof is long and technical, we formulate the statements in the form of three
Lemmata.

Lemma 8.

lim
r→∞

lim
n→∞

∑
π∈Σn

E
[
E[Iπ(A)|Fr,n]2

]
= 0 .

Lemma 9.

lim
r→∞

lim
n→∞

∑
?

E [E[Iπ(A)|Fr,n]E[Iπ′(A)|Fr,n]] = 0 .

Lemma 10.

lim
r→∞

lim
n→∞

∑
?

E [E[Iπ(A)Iπ′(A)|Fr,n]] = 0 .

The first contribution is easily taken care of:

Proof of Lemma 8. By symmetry we have that∑
π∈Σn

E[E[Iπ(A)|Fr,n]2] = n!E[E[Iπ∗(A)|Fr,n]2] , (3.38)
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where π∗ ∈ Σn is arbitrary. It thus follows from the tail-estimates of Lemma 2 that

(3.38) = n!

∫ 1+ a
n

0

(
1 +K(1 +

a

n
− x, n− 2r)

)2 e−2(1+ a
n

)+x(1 + a
n
− x)2n−4rx2r−1

(n− 2r)!2(2r − 1)!
dx

≤ n!

∫ 1+ a
n

0

(
1 + e(1+ a

n
) (1 + a

n
)

n− 2r

)2 e−(1+ a
n

)(1 + a
n
)2n−4r(1 + a

n
)2r−1

(n− 2r)!2(2r − 1)!
dx

=
n!e2a

(n− 2r)!2(2r − 1)!
(1 + on(1)) .

(3.39)
Since the r.h.s. of (3.39) is vanishing in the large n-limit, the proof of Lemma 8 is
concluded. �

Lemma 9 and 10 require more work. In particular, we will make heavy use of the
following combinatorial estimates, which have been established by Fill and Pemantle [8]
(see Lemma 2.3, 2.4 and 2.5 p. 598):

Proposition 11 (Path counting). Let π′ be any reference path on the n-dim hypercube
connecting 0 and 1. Denote by f(n, k) the number of paths π that share precisely k edges
(k ≥ 1) with π′. Finally, shorten ne ≡ n− 5e(n+ 3)2/3.

• For any K(n) = o(n) as n→∞,

f(n, k) ≤ (1 + o(1))(k + 1)(n− k)! (3.40)

uniformly in k for k ≤ K(n).
• Suppose k ≤ ne. Then, for n large enough,

f(n, k) ≤ n6(n− k)! . (3.41)

• Suppose k ≥ ne. Then, for n large enough,

f(n, k) ≤ (2n
7
8 )
n−k

(n− k + 1) . (3.42)

Proof of Lemma 9. Here and below, κa > 0 will denote a universal constant not necessar-
ily the same at different occurences, and which depends solely on a. By symmetry,∑

?

E[Iπ(A)Iπ′(A)] = n!
∑
?,?

E[Iπ∗(A)Iπ′(A)] (3.43)

where π∗ ∈ Σn is arbitrary and
∑

?,? standing for summation over

π′ ∈ Σn : (π∗, π′) ∈ Σn,r, 1 ≤ π∗ ∧ π′ ≤ n− 2.

Let k ∈ {1, n − 2} and π′ ∈ Σn, π
∗ ∧ π′ = k. Splitting Xπ∗ and Xπ′ into common/non-

common edges, we obtain

E[Iπ∗(A)Iπ′(A)] = P
(
Xπ∗ ≤ 1 +

a

n
,Xπ′ ≤ 1 +

a

n

)
=

∫
R
P
(
x+Xn−k ≤ 1 +

a

n
, x+X ′n−k ≤ 1 +

a

n
| Xk = x

)
P(Xk ∈ dx) .

(3.44)
In the above, Xn−k and X ′n−k correspond to the compound weights of the non-common
edges: these are Gamma(n − k, 1)-distributed random variables; Xk corresponds to the
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weight of the common edges: this is a Gamma(k, 1)-distributed random variable. By
construction, Xn−k, X

′
n−k and Xk are independent. All in all,

E[Iπ∗(A)Iπ′(A)] =

∫ +∞

0

P
(
x+Xn−k ≤ 1 +

a

n

)2 e−xxk−1

(k − 1)!
dx

≤ κa

(n− k)!2

∫ 1+ a
n

0

(
1 +

a

n
− x
)2(n−k) xk−1

(k − 1)!
dx .

(3.45)

The last inequality by the tail-estimate of Lemma 2. Integration by parts then yields∫ 1+ a
n

0

(
1 +

a

n
− x
)2(n−k)

xk−1dx ≤ κa
(k − 1)!(2(n− k))!

(2n− k)!
. (3.46)

and therefore

E[Iπ∗(A)Iπ′(A)] ≤ κa
(2(n− k))!

(2n− k)!(n− k)!2
. (3.47)

Denoting by f(n, k, r) the number of paths π′ that share precisely k edges (1 ≤ k ≤ n−2)
with π∗ and that satisfy (π′, π∗) ∈ Σn,r, we thus have that

n!
∑
?,?

E[Iπ∗(A)Iπ′(A)] = n!
n−2∑
k=1

f(n, k, r)E[Iπ∗(A)Iπ′(A)]

(3.47)

≤ κa

n−2∑
k=1

f(n, k, r)

(n− k)!
× n!(2(n− k))!

(n− k)!(2n− k)!

≤ κa

n−2∑
k=1

f(n, k, r)

(n− k)!
×

(1− k
n
)n−k

2k(1− k
2n

)2n−k
,

(3.48)

the last inequality by Stirling approximation. To lighten notation, remark that with
γ ≡ k/n ∈ [0, 1], the second factor in the last sum above can be written as

(1− k
n
)n−k

2k(1− k
2n

)2n−k
=

(
(4(1− γ))(1−γ)

(2− γ)(2−γ)

)n

≡ g(γ)n . (3.49)

With this, (3.48) takes the form

n!
∑
?,?

E[Iπ∗(A)Iπ′(A)] ≤ κa

n−2∑
k=1

f(n, k, r)

(n− k)!
× g

(
k

n

)n
. (3.50)

The following observation, whose elementary proof is postponed to the end of this section,
will be useful.

Fact 1. The function g : [0, 1]→ R+ defined (3.49) is increasing on [2/3, 1). Furthermore,

∀γ ≤ 2/3 : g(γ) ≤
(

3

4

)γ
. (3.51)

In view of Proposition 11, recalling that ne = n− 5e(n+ 3)2/3 and with

C ≡ 7

ln (4/3)
, (3.52)
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we split the sum on the r.h.s. of (3.50) into three regimes, to wit:C ln(n)∑
k=1

+
ne∑

k=C ln(n)+1

+
n−2∑

k=ne+1

 f(n, k, r)

(n− k)!
× g

(
k

n

)n
. (3.53)

Concerning the first sum :

C ln(n)∑
k=1

f(n, k, r)

(n− k)!
g

(
k

n

)n (3.51)

≤
C ln(n)∑
k=1

f(n, k, r)

(n− k)!

(
3

4

)k

≤
r−1∑
k=1

f(n, k, r)

(n− r + 1)!

(
3

4

)k
+

C ln(n)∑
k=r

f(n, k)

(n− k)!

(
3

4

)k

≤
r−1∑
k=1

f(n, k, r)

(n− r + 1)!

(
3

4

)k
+ κa

C ln(n)∑
k=r

(k + 1)

(
3

4

)k
,

(3.54)

by Proposition 11.
The function f(n, k, r) counts the number of paths π′ that share precisely k edges

(1 ≤ k ≤ n− 2) with π∗ and that satisfy (π′, π∗) ∈ Σn,r: we claim that

f(n, k, r) ≤ r!(n− r − 1)!n. (3.55)

To see this, recall that the vertices of the hypercube stand in correspondence with the
standard basis of Rn: every edge is parallel to some unit vector ej, where ej connects
(0, . . . , 0) to (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position j. We identify a directed path π
from 0 to 1 by a permutation of 12 . . . n, say π1π2 . . . πn. πl is giving the direction the
path π goes in step l, hence after i steps the path π1π2 . . . πn is at vertex

∑
j≤i eπj . (By

a slight abuse of notation, π1 will refer here below to a number between, 1 and n). Let
now π∗ be the reference path, say π∗ = 12...n. We set ui = l if the l-th traversed edge by
π′ is the i-th shared edge of π′ and π∗, setting by convention r0 = 0 and rk+1 = n + 1.
Shorten then u ≡ u(π′) = (u0, ..., uk+1), and si ≡ ui+1 − ui, i = 0, ..., k. For any sequence
u0 = (u0, ..., uk+1) with 0 = u0 < u1 < ... < uk < uk+1 = n + 1, let C(u0) denote
the number of paths π′ with u(π′) = u0. Since the values π′ui+1, ..., π

′
ui+si−1 must be a

permutation of {ui + 1, ..., ui + si − 1}, one easily sees that C(u) ≤ G(u), where

G(u) =
k∏
i=0

(si − 1)! . (3.56)

We also observe that two such paths must have a common edge in the middle region
(π′, π∗) ∈ Σn,r. Let e be such an edge: as it turns out, this is quite restrictive. Indeed,
it implies that there exists uj ∈ {r + 1, n − r} for j ∈ {1, ..., k}. In virtue of (3.56) and
log-convexity of factorials, one has at most r!(n− r− 1)! paths π′ sharing the edge e with
the reference-path π∗, and at most

(
n
1

)
= n ways to choose this edge: combining all this

settles (3.55).
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It follows that
C ln(n)∑
k=1

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤

r−1∑
k=1

r!(n− r − 1)!n

(n− r + 1)!

(
3

4

)k
+ κa

+∞∑
k=r

(k + 1)

(
3

4

)k
. (3.57)

The first sum above clearly tends to 0 as n→∞, whereas the second sum vanishes when
r →∞: the first regime in (3.53) therefore yields no contribution in the double limit.

As for the second regime, by Proposition 11,
ne∑

k=C ln(n)

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤

ne∑
k=C ln(n)

f(n, k)

(n− k)!
g

(
k

n

)n

≤ n6

ne∑
k=C ln(n)

g

(
k

n

)n

= n6

 2n/3∑
k=C ln(n)

g

(
k

n

)n
+

ne∑
k=2n/3+1

g

(
k

n

)n .

(3.58)

As pointed out in Fact 1, the g-function is increasing on [2/3, 1), whereas on the ”com-
plement” (3.51) holds: these observations, together with (3.58) imply that

ne∑
k=C ln(n)

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤ n6

 2n/3∑
k=C ln(n)

(
3

4

)k
+

ne∑
k=2n/3+1

g
(ne
n

)n
≤ 4n6

(
3

4

)C ln(n)

+ n7g
(ne
n

)n
= 4 exp {(6 + C ln(3/4)) ln(n)}+ n7g

(ne
n

)n
.

(3.59)

In virtue of the choice (3.52) we have that 6 + C ln(3/4) = −1, hence

(3.59) = on(1) + n7g
(ne
n

)n
. (3.60)

By definition of the g-function (3.49) and ne, it holds:

g
(ne
n

)n
=

(1− ne
n

)n−ne

2ne(1− ne
2n

)2n−ne

=

(
5e(n+ 3)

2
3

n

)5e(n+3)
2
3

210e(n+3)
2
3

(
1 +

5e(n+ 3)
2
3

n

)−n−5e(n+3)2/3

.

(3.61)

Notice that

1 +
5e(n+ 3)

2
3

n
≥ 1 and (n+ 3)

2
3 ≤ 2n

2
3 for n ≥ 3, (3.62)

thus

(3.61) ≤
(

40e

n1/3

)10en
2
3

= o(n−7) , (3.63)
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implying that the second regime in (3.53) yields no contribution in the limit n→ +∞.

As for the third, and last regime: by definition of the g-function,

n−2∑
k=ne+1

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤

n−2∑
k=ne+1

f(n, k)

(n− k)!

(1− k
n
)n−k

2k(1− k
2n

)2n−k

≤
n−2∑

k=ne+1

(2n
7
8 )
n−k

(n− k + 1)

(n− k)!

(1− k
n
)n−k

2k(1− k
2n

)2n−k
,

(3.64)

the last step in virtue of Proposition 11. By change of variable, n− k 7→ u, we get

(3.64) =

5e(n+3)
2
3−1∑

u=2

(
8un

7
8

n

)u
(u+ 1)

(1 + u
n
)n+uu!

≤
∞∑
u=2

(
8e

n
1
8

)u
(u+ 1) , (3.65)

the last inequality by Stirling’s approximation. It thus follows that the contribution of
the third and last regime in (3.53) also vanishes as n → +∞. The proof of Lemma 9 is
concluded. �

We finally provide the elementary

Proof of Fact 1. The sign of g′ is given by the sign of

d

dγ
(ln(4− 4γ)(1− γ)− ln(2− γ)(2− γ)) = ln

(
2− γ
4− 4γ

)
.

It follows that g′(γ) ≤ 0 ∀γ ≤ 2/3 and g′(γ) ≥ 0 ∀γ ≥ 2/3. Furthermore, since

1− γ ≤
(

1− γ

2

)2

,

we have

g(γ) =
(4(1− γ))(1−γ)

(2− γ)(2−γ)
≤ (2− γ)−γ ≤

(
3

4

)γ
, (3.66)

∀γ ≤ 2/3, settling (3.51). �

Proof of Lemma 10. Again by symmetry,∑
?

E[E[Iπ(A)|Fr,n]E[Iπ′(A)|Fr,n]]

= n!
∑
?,?

E[E[Iπ∗(A)|Fr,n]E[Iπ′(A)|Fr,n]]

= n!
∑
?,?

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)]
,

(3.67)

where π∗ ∈ Σn and
∑

?,? stands for summation over

π′ ∈ Σn, (π
∗, π′) ∈ Σn,r : 1 ≤ π∗ ∧ π′ ≤ n− 2.

We split this sum into two parts: the first contribution will stem from paths π′ which
share less than 2r edges with π∗, in which case π′ and π∗ are almost independent when n
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tends to +∞; the second contribution will come from the (fewer) paths which are more
correlated with π∗. Precisely, we write:

(3.67) =n!
∑
?,?,1

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)]
+ n!

∑
?,?,2

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)] (3.68)

while
∑

?,?,1 denotes summation over

π′ ∈ Σn, (π
∗, π′) ∈ Σn,r : 1 ≤ π∗ ∧ π′ ≤ 2r ,

whereas
∑

?,?,2 stands for summation over

π′ ∈ Σn, (π
∗, π′) ∈ Σn,r : 2r + 1 ≤ π∗ ∧ π′ ≤ n− 2.

We now proceed to estimate these two sums: in the first case we will exploit the fact that
the involved paths are almost independent. To see how this goes, let

Cr,n,π′ ≡
{
e = (u, v) ∈ En,min{d(u,0), d(v,0)} ∈ [0, r) ∪ [n− r, n) ,

e is a common edge of π′ and π∗
}
,

(3.69)

and denote by #C ≡ |Cr,n,π′| the cardinality of this set. We now make the following
observations:

• #C = 0 (i.e. Cr,n,π′ = ∅) implies that π′ and π∗ are, conditionally upon Fr,n,
independent.
• If #C > 0, by positivity of exponentials,

P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)
≤ P

Xπ′ −
∑

e∈Cr,n,π′

ξe ≤ 1 +
a

n

∣∣∣∣∣Fr,n


= P
(
Xn−#C ≤ 1 +

a

n

∣∣∣Fr,n) ,
(3.70)

where Xn−#C is a Gamma(n−#C, 1)-distributed random variable which is, con-
ditionally upon Fr,n, independent of Xπ∗ .

Altogether,

n!
∑
?,?,1

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)]
≤ n!P

(
Xπ∗ ≤ 1 +

a

n

)∑
?,?,1

P
(
Xn−#C ≤ 1 +

a

n

)
.

(3.71)

Convergence of the intensity functions (2.1), implies that the first term n!P
(
Xπ1 ≤ 1 + a

n

)
converges; in particular, it remains bounded as n→∞. It therefore suffices to prove that∑

?,?,1 P
(
Xn−#C ≤ 1 + a

n

)
tends to 0 in the double limit. To see this, denote by f(n, k, r)
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the number of paths π′ that share precisely k edges (1 ≤ k ≤ n − 2) with π∗ and with
(π′, π∗) ∈ Σn,r. We then have:∑

?,?,1

P
(
Xn−#C ≤ 1 +

a

n

)
=

2r∑
k=1

f(n, k, r)P
(
Xn−#C ≤ 1 +

a

n

)
≤

2r∑
k=1

f(n, k)P
(
Xn−#C ≤ 1 +

a

n

)
,

(3.72)

where f(n, k) is the the number of paths π′ that share precisely k ≥ 1 edges with π∗. By
the tail-estimates from Lemma 2,

P
(
Xn−#C ≤ 1 +

a

n

)
≤ κa

(n−#C)!
≤ κa

(n− k + 1)!
. (3.73)

The second inequality holds since two paths in Σn,r must share an edge in the complement
of Cr,n,π′ . Using (3.73) and Proposition 11 we obtain

(3.72) ≤ κa

2r∑
k=1

(n− k)!(k + 1)

(n− k + 1)!
, (3.74)

which vanishes as n→∞: the first sum in (3.68) therefore yields a vanishing contribution.
As for the second sum, by Cauchy-Schwarz,

n!
∑
?,?,2

E[E[Iπ∗(A)|Fr,n]E[Iπ′(A)|Fr,n]] ≤ n!
∑
?,?,2

E
[
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)2
]
. (3.75)

By the tail-estimates from Lemma 2, for the expectation on the r.h.s. above it holds

E
[
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)2
]

=

∫ 1+ a
n

0

(
1 +K(1 +

a

n
− x, n− 2r)

)2 e−2(1+ a
n

)+x(1 + a
n
− x)2n−4rx2r−1

(n− 2r)!2(2r − 1)!
dx

≤ κa

(n− 2r)!2(2r − 1)!

∫ 1+ a
n

0

(
1 +

a

n
− x
)2n−4r

x2r−1dx.

(3.76)

Integration by parts then yields∫ 1+ a
n

0

(
1 +

a

n
− x
)2n−4r

x2r−1dx ≤ κa
(2n− 4r)!(2r − 1)!

(2n− 2r)!
, (3.77)

Using (3.76) and (3.77) we get

(3.75) ≤ κa

n−2∑
k=2r+1

f(n, k, r)

(n− 2r)!

n!(2n− 4r)!

(n− 2r)!(2n− 2r)!
. (3.78)

It clearly holds that
n!(2n− 4r)!

(n− 2r)!(2n− 2r)!
≤ 1, (3.79)
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hence

(3.78) ≤
n−2∑

k=2r+1

f(n, k, r)

(n− 2r)!

=

(
2r+7∑

k=2r+1

+
ne∑

k=2r+8

+
n−2∑

k=ne+1

)
f(n, k, r)

(n− 2r)!

=: (A) + (B) + (C),

(3.80)

say. By Proposition 11, and worst-case estimates, the following upperbounds hold:

(A) ≤
2r+7∑

k=2r+1

(k + 1)(n− k)!

(n− 2r)!
≤ κa

7(2r + 8)(n− 2r − 1)!

(n− 2r)!

(B) ≤
ne∑

k=2r+8

n6(n− k)!

(n− 2r)!
≤ n6

ne∑
k=2r+8

(n− k)!

(n− 2r)!
≤ n7 (n− 2r − 8)!

(n− 2r)!

(C) ≤
n−2∑

k=ne+1

(2n7/8)
n−k

(n− k + 1)

(n− 2r)!
≤ n2(2n7/8)

5e(n+3)2/3

(n− 2r)!
.

(3.81)

All three terms are clearly vanishing in the limit n → ∞. This implies that the second
sum in (3.68) yields no contribution, and the proof of Lemma 10 is thus concluded. �

Appendix: the conditional Chein-Stein method

All random variables in the course of the proof are defined on the same probability
space (Ω,F ,P). Let F ⊂ F be a sigma algebra, I is a finite (deterministic) set, and
(Xi)i∈I a family of Bernoulli random variables. We set

W ≡
∑
i∈I

Xi, λ ≡
∑
i∈I

E(Xi|F) .

Since the claim is trivial for λ = 0 we assume λ > 0 from here onwards. Additionally we

denote by Ŵ a random variable which is, conditionally upon F , Poi(λ)-distributed, i.e.

P(Ŵ = k|F)(ω) =
λ(ω)k

k!
e−λ(ω). (3.82)

(To lighten notation, we will omit henceforth the ω-dependence). Assume to be given a
bounded, F -measurable (possibly random) real-valued function f which satisfies

E(f(Ŵ )|F) = 0,

and define gf : N→ R by

gf (0) ≡ 0, gf (n) ≡ (n− 1)!

λn

n−1∑
k=0

f(k)λk

k!
n > 0 . (3.83)

We claim that gf is F -measurable, bounded, and satisfies the following identities:

f(n) = λgf (n+ 1)− ngf (n), n ≥ 0 , (3.84)



FPP IN THE HYPERCUBE 24

and

gf (n) = −(n− 1)!

λn

∞∑
k=n

f(k)λk

k!
n > 0. (3.85)

Measurability and first identity follow steadily from the definition. The second identity

follows from the fact that E(f(Ŵ )|F) = 0, whereas boundedness follows from the integral
representation of the Taylor rest-term of the exponential function:

| gf (n) |≤ (n− 1)! maxk∈N | f(k) |
λn

λ∫
0

tn−1

(n− 1)!
etdt ≤ maxk∈N | f(k) | eλ

n
. (3.86)

Let now A ⊂ N0, and consider the function

fA,λ(n) ≡ 1n∈A − P(Ŵ ∈ A|F), n ∈ N. (3.87)

This is clearly a bounded, F -measurable function which satisfies E(fA,λ(Ŵ )|F) = 0.
Therefore, by the above and in particular (3.84), there exists a bounded F -measurable
function, denoted by gA,λ, which satisfies

1n∈A − P(Ŵ ∈ A|F) = λgA,λ(n+ 1)− ngA,λ(n), (3.88)

almost surely for any n ∈ N. It follows that

1W∈A − P(Ŵ ∈ A|F) = λgA,λ(W + 1)−WgA,λ(W ). (3.89)

Taking conditional expectations thus yields

P(W ∈ A|F)− P(Ŵ ∈ A|F) = λE(gA,λ(W + 1)|F)− E(WgA,λ(W )|F)

=
∑
i∈I

E(Xi|F)E(gA,λ(W + 1)|F)− E(XigA,λ(W )|F).

(3.90)
Consider now the random subset

Ni ≡ {j ∈ I \ {i} : Xj and Xi are not conditionally independent given F},

and denote by S(i) a random variable which is distributed like
∑
j∈Ni

Xj conditionally upon

F and {Xi = 1}, i.e.

P(S(i) = k|F) = P

(∑
j∈Ni

Xj = k,Xi = 1
∣∣∣F)/P(Xi = 1

∣∣F) . (3.91)

if P(Xi = 1|F) > 0, and arbitrarily defined otherwise.
We remark that Xi and (Xj)j∈(Ni∪{i})c are conditionally on F independent. Therefore

E(XigA,λ(W )|F) = P(Xi = 1|F)E

gA,λ
1 + S(i) +

∑
j∈I\(Ni∪{i})

Xj

∣∣∣∣∣F
 , (3.92)
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since Xi and Xj are conditionally independent given F . Plugging this into the r.h.s. of
(3.90) yields

P(W ∈ A|F)− P(Ŵ ∈ A|F)

=
∑
i∈I

E(Xi|F)E

gA,λ(1 +W )− gA,λ(1 + S(i) +
∑

j∈I\(Ni∪{i})

Xj)

∣∣∣∣∣F
 . (3.93)

Set now

M ≡ sup{|gA,λ(n+ 1)− gA,λ(n)| : n ∈ N0} . (3.94)

(Notice that M is F -measurable). By the triangle inequality, and worstcase-scenario,

| P(W ∈ A|F)− P(Ŵ ∈ A|F) |≤M
∑
i∈I

E(Xi|F)E(Xi + S(i) +
∑
j∈Ni

Xj|F)

= M
∑
i∈I

(
E(Xi|F)2 +

∑
j∈Ni

(E(XjXi|F) + E(Xj|F)E(Xi|F))

)
.

(3.95)

It remains to prove that M ≤ 1. To this end we observe that additivity of g.,λ is inherited
from f.,λ, hence

gA,λ =
∑
j∈A

g{j},λ . (3.96)

Furthermore,
∞∑
j=0

g{j},λ(n+ 1)− g{j},λ(n) = 0, (3.97)

since
∞∑
j=0

g{j},λ(n)
(3.96)
= gN0,λ(n) = 0 ∀n ∈ N, (3.98)

because fN0,λ is the zero function. Therefore, for any A ⊂ N0,

|gA,λ(n+ 1)− gA,λ(n)| ≤
∞∑
j=0

(g{j},λ(n+ 1)− g{j},λ(n))+. (3.99)

By (3.83), the definition of f and elementary computations we have, for 0 < n ≤ j, that

g{j},λ(n) = −P(Ŵ = j|F)
n−1∑
l=0

(n− 1)!

λl+1(n− 1− l)!
. (3.100)

This implies in particular that g{j},λ(n) is decreasing in n on [0, j], hence all summands
j ≥ n + 1 in (3.99) vanish. On the other hand, by (3.85), again the definition of f and
elementary computations we have for n > j

g{j},λ(n) = P(Ŵ = j|F)
∞∑
l=0

λl(n− 1)!

(n+ l)!
. (3.101)



FPP IN THE HYPERCUBE 26

Since this is also decreasing in n, it follows that j = n is the only non-zero summand in
(3.99). All in all,

M = sup
n∈N
| gA,λ(n+ 1)− gA,λ(n) |≤ sup

n∈N
| g{n},λ(n+ 1)− g{n},λ(n) | . (3.102)

Now, for n > 0, by (3.100) and (3.101),

| g{n},λ(n+ 1)− g{n},λ(n) |=

=
λne−λ

n!

(
∞∑
l=0

λl(n− 1)!

(n+ l)!
+

n−1∑
l=0

(n− 1)!

λl+1(n− 1− l)!

)

=
e−λ

n

(
∞∑
l=n

λl

l!
+

n−1∑
l=0

λl

l!

)
=

1

n
≤ 1.

(3.103)

On the other hand, for n = 0,

| g{0},λ(1)− g{0},λ(0) |= 1

λ
(1− e−λ) ≤ 1 , (3.104)

by Taylor estimate. Using (3.103) and (3.104) in (3.102) shows that M ≤ 1 as claimed,
and concludes the proof of the conditional Chen-Stein method.

�

References
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Basel (2008).

[2] Bovier, Anton. Gaussian processes on trees: From spin glasses to branching Brownian motion. Cam-
bridge Studies in Advanced Mathematics Vol. 163, Cambridge University Press (2016).

[3] Bovier, Anton and Lisa Hartung. The extremal process of two-speed branching Brownian motion.
Elect. J. Probab. 19, No. 18 (2014): 1-28.

[4] Bovier, Anton and Lisa Hartung. Variable speed branching Brownian motion 1. Extremal processes
in the weak correlation regime. ALEA, Lat. Am. J. Probab. Math. Stat. 12 (2015): 261-291.

[5] Derrida , Bernard and Herbert Spohn. Polymers on disordered trees, spin glasses, and traveling
waves. J. Statist. Phys. 51, no. 5-6 (1988): 817840.

[6] Fang, Ming and Ofer Zeitouni. Slowdown for time inhomogeneous branching Brownian motion. J.
Stat. Phys. 149 no. 1 (2012): 19.

[7] Fang, Ming and Ofer Zeitouni. Branching random walks in time inhomogeneous environments. Elec-
tron. J. Probab. 17 no. 67 (2012): 1-18.

[8] Fill, James Allen, and Robin Pemantle. Percolation, first-passage percolation and covering times for
Richardson’s model on the n-cube. The Annals of Applied Probability (1993): 593-629.

[9] Kistler, Nicola. Derrida’s random energy models. From spin glasses to the extremes of correlated
radom fields. In: V. Gayrard and N. Kistler (Eds.) Correlated Random Systems: five different
methods, Springer Lecture Notes in Mathematics, Vol. 2143 (2015).

[10] Kallenberg, Olav. Random Measures, Theory and Applications. Springer (2017).
[11] Kistler, Nicola, Adrien Schertzer and Marius A. Schmidt. First passage percolation in the mean field

limit. ArXiv e-prints (2018).
[12] Villani, Cédric, Optimal transport, Grundlehren der Mathematischen Wissenschaften, Springer-

Verlag, Berlin (2009).



FPP IN THE HYPERCUBE 27

Nicola Kistler, J.W. Goethe-Universität Frankfurt, Germany.
E-mail address: kistler@math.uni-frankfurt.de

adrien schertzer, J.W. Goethe-Universität Frankfurt, Germany.
E-mail address: schertzer@math.uni-frankfurt.de

Marius A. Schmidt, J.W. Goethe-Universität Frankfurt, Germany.
E-mail address: mschmidt@math.uni-frankfurt.de


	1. Introduction and main results
	2. Strategy of proof
	3. Proofs
	3.1. The double weak-limit
	3.2. Vanishing of the Chen-Stein term.

	Appendix: the conditional Chein-Stein method
	References

