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AMP ALGORITHMS AND STEIN’S METHOD:

UNDERSTANDING TAP EQUATIONS WITH A NEW METHOD

STEPHAN GUFLER, ADRIEN SCHERTZER, AND MARIUS A. SCHMIDT

ABSTRACT. We propose a new iterative construction of solutions of the classical TAP
equations for the Sherrington-Kirkpatrick model, i.e. with finite-size Onsager correction.
The algorithm can be started in an arbitrary point, and converges up to the AT line. The
analysis relies on a novel treatment of mean field algorithms through Stein’s method. As
such, the approach also yields weak convergence of the effective fields at all temperatures
towards Gaussians, and can be applied, upon proper alterations, to all models where TAP-
like equations and a Stein-operator are available.

1. INTRODUCTION AND MAIN RESULTS

Let N ∈ N and consider independent standard Gaussians G ≡ {gi j}1≤i< j≤N issued on
some probability space (Ω,F ,P). We set gi j = g ji for i > j. For simplicity of notation,
we set gii = 0 as well as all the partial derivatives d

dgii
= 0. We denote by E expectation

with respect to these random variables. To inverse temperature β ∈ R and external field
h∈R, the TAP equations [21] for the SK model [18] are self-consistency equations, which
approximately describe the quenched magnetizations m = (m1, . . . ,mN) ∈ [−1,1]N, i.e.
the mean of the Ising spins under Gibbs measure, reading

mi = tanh

(

h+
β√
N

N

∑
j=1

gi jm j −β 2 (1−qN)mi

)

i = 1 . . .N, (1)

where

qN ≡ qN(m) :=
1

N

N

∑
i=1

m2
i (2)

is the Edwards-Anderson order parameter, EA for short, whereas the "reaction term"

β 2 (1−qN)mi =: Oni (3)

is the finite-size Onsager correction. These equations are known to be a good approxima-
tion for the magnetizations in some high temperature regime [1, 8, 19, 20] and believed
to be such at least if β ,h satisfy the AT condition

β 2
E

1

cosh4(h+β
√

qZ)
≤ 1, (4)

where q ≥ 0 solves

q = E tanh2 (h+β
√

qZ) =: φ(q) . (5)
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We refer to q as the limiting fixed point, but it is known as the replica symmetric solution
also; here and henceforth, we denote by Z a standard Gaussian, and by E its expectation.
From now on, q denotes the solution of the fixed point equation (5) which is unique for
h 6= 0 or h = 0, |β | ≤ 1, and we choose q to be the unique positive fixed point of (5) for
h = 0, |β |> 1.1

For i = 1 . . .N, we refer to

hi ≡ hi(m) :=
N

∑
j=1

gi jm j, (6)

as effective fields. In this note, we propose a new algorithmic construction of the solutions
of (1). The key observation towards this goal concerns the "true" nature of the finite-size
Onsager correction. Indeed, by Gaussian partial integration (PI for short) and Leibniz
rule,

E

[

β√
N

N

∑
j=1

gi jm j

]

(PI)
=

β√
N

N

∑
j=1

E

[

dm j

dgi j

]

(1)
= E

[

β 2 (1−qN)mi

]

+RN , (7)

where

RN := E

[

β 2

√
N

∑
j 6=i

(

1−m2
j

)

{

∑
l 6= j

gl j√
N

dml

dgi j

−β
d

dgi j

{

(1−qN)m j

}

}

− β 2

N

(

1−m2
i

)

mi

]

.

(8)
The first term on the r.h.s. of (7) is the (mean of the) Onsager correction (3): it neatly

emerges through one Gaussian PI only. The second term captures the nifty fact that the
G-dependence of the mi = mi(gkl,1 ≤ k < l ≤ N) actually goes on ad infinitum. Notwith-
standing, a closer look at (8) suggests that stochastic cancellations may dampen such
infinite rebouncing. In other words, we expect that RN contributes to lower orders only.
This insight turns out to be correct, cfr. Theorem 9 below, and represents the backbone of
the present work. Due to the Gaussian nature of the random sum, a first natural guess is of
course a central limit theorem; this will indeed turn out to be the case, see Proposition 5
below. To elaborate precisely we define our iteration as follows. For i ≤ N and i,N,k ∈N

we consider

m
(k+1)
i := tanh

(

h+Y
(k)
i

)

(9)

with the re-centered effective fields given by

Y
(k)
i :=

β√
N

N

∑
j=1

gi jm
(k)
j −On

(k)
i , (10)

where On
(k)
i is given by either of the following choices

(I) On
(k)
i := β 2

(

1−q
(k)
N

)

m
(k−1)
i ,

(II) On
(k)
i := β√

N
∑N

j=1 di jm
(k)
j .

1For h = 0 and |β | > 1 there are two solutions of (5) namely 0 and q > 0. See Lemma 24 for more
details.
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Here and henceforth we use the notations

q
(k)
N :=

1

N

N

∑
i=1

m
(k)
i

2
and dklF :=

dF

dgkl

,

for suficiently smooth functions F . Choice (I) is the classical, finite-size Onsager cor-
rection to the TAP equations (1). For this choice the iteration is known to approximate
the magnatizations of the SK-Model well, at least in some temperature regime, see [10]
for details. By the heuristics related to (7), the second choice (II) rather highlights the
Onsager reaction term as a re-centering of the effective fields. All our results are valid in
both cases, yet the second (and apparently: new) correction – as well as its interpretation
– are arguably more natural within our Stein framework. To properly define m(k) a start-
ing values m(1) or in case (I) m(0),m(1) are needed. Concening these values we assume
throughout, that :

A1) The starting value m(1) ∈ [−1,1]N is either deterministic or independent of the
G-disorder.

A2) In case of choice (I), we additionally set m(0) := 0.

The extent to which A1) can be relaxed is discussed in Remark 10 below.
Clearly the limit of this algorithm, if it converges, is a solution of (1). This motivates

our first result, the following pseudo-convergence2 :

Proposition 1. For β ,h ∈ R and liminfN→∞ q
(1)
N > 0 if h = 0, |β |> 1, we have

lim
k,l→∞

limsup
N→∞

1

N

N

∑
i=1

[

(

m
(k)
i −m

(l)
i

)2
]

= 0 (11)

if and only if the AT condition (4) is satisfied.

To investigate further we shorten

q
(k,k′)
N := N−1

N

∑
i

m
(k)
i m

(k′)
i and q

(k)
N := q

(k,k)
N . (12)

The convergence in (11) goes as follow: We can rewrite the l.h.s. of (11) as

1

N

N

∑
i=1

[

(

m
(k)
i −m

(l)
i

)2
]

= q
(k)
N +q

(l)
N −2q

(k,l)
N . (13)

We will see that the two first terms of the r.h.s. tend to q as N → ∞. However, q
(k,l)
N tends

to q as N → ∞ and k → ∞ if and only if the AT-condition (4) is satisfied and converges to
a limit strictly smaller than q if the AT-condition (4) is not satisfied.
To describe the situation precisely let

ψ(t, t ′, t ′′) := E
[

tanh(h+βZ′) tanh(h+βZ′′)
]

(14)

for t ′, t ′′ ∈ [0,1], |t| ≤
√

t ′t ′′, where the expectation is over centered Gaussians Z′,Z′′ such
that

Var(Z′) = t ′, Var(Z′′) = t ′′, Cov(Z′,Z′′) = t. (15)

2This is quite a delicate issue. Indeed, even the meaning of "solution" and "convergence" are a priori by
far not obvious: due to the mean field character of the random system, one has to first send N → ∞, and only
in a second step k → ∞. Naturally, the proper procedure to allow for a discussion of the true TAP-solutions
would send k → ∞ with N fixed.
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Additionally we say XN,k → X in probability as N → ∞ followed by k → ∞, if for all ε > 0

lim
k→∞

limsup
N→∞

P
(

|XN,k −X |> ε
)

= 0.

In the same way, we say XN,k → X weakly as N → ∞ followed by k → ∞, if

lim
k→∞

limsup
N→∞

E
(

f
(

XN,k

))

= E( f (X))

for all continuous and bounded functions f . Similarly, for k1,k2 . . .kL → ∞ the limk→∞ is
repaced by limk1,k2...kL→∞.

Remark 2. The use of limsup is required to account for arbitrary starting values. It

can be replaced by the normal limit if the initial value is well behaved, i.e if q
(1)
N and

1
N ∑N

i=1 m
(k)
i converge as N → ∞.

Theorem 3. For all β ,h ∈ R and assuming liminfN→∞ q
(N)
1 > 0 a.s. additionally if h =

0, |β |> 1 , we have

q
(k,k′)
N →

{

q if k = k′

q̃ if k 6= k′ in probability as N → ∞ followed by k,k′ → ∞ (16)

where q̃ is the smallest non-negative fixed point of f (t) = ψ(t,q,q). Additionally q = q̃

if the AT condition (4) is satisfied and q > q̃ otherwise.

Remark 4. For h = 0, the system can not entirely forget the initial condition in the double

limit in low temperature. Indeed, if h = 0, |β | > 1 and limN→∞ q
(1)
N = 0, then q > 0, but

q
(k,k′)
N → 0. in probability as N → ∞. This case is due to the fact that t → ψ(t, t, t) = φ(t)

has two fixed points for h = 0, |β | > 1 (see equation (5) and the comments below): A

repulsive fixed point 0 and an attractive fixed point q. Therefore, 0 is only relevant, when

the algorithm starts "close" to it.

Proof of Proposition 1. The claim follows immeadiately by applying Theorem 3 to (13).
�

We now state the afforementioned CLT for the centered effective fields, which con-
cludes a first big picture overview over the behaviour of the iteration.

Proposition 5. For all β ,h ∈ R, L ∈ N, (kl, il)l≤L ∈ (N×{1, · · · ,N})L, and if

h = 0, |β |> 1 assuming liminfN→∞ q
(N)
1 > 0 a.s. additionally, we have

(Y
(k1)
i1

, . . . ,Y
(kL)
iL

)→ Z ,

in distribution as N → ∞ followed by k1, . . . ,kL → ∞, such that (il,kl) 6= (il′,kl′) for all

l 6= l′ and where Z is a centered Gaussian field with covariance

Σ∞(l, l
′) := E[ZlZl′] =











β 2q if l = l′

β 2q̃ if l 6= l′, il = il′

0 otherwise

.

Note that this implies that (Y
(k1)
1 ,Y

(k2)
2 , . . .Y

(kL)
L ) tends weakly to a vector of independent

centered Gaussians of variance β 2q. Correlations are only present in the limit between

effective fields at the same site, i.e. between Y
(k)
i with the same i. If the AT condition (4)

is satisied q= q̃ by Theorem 3, which corresponds to the re-centered effective fields being
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perfetly correlated and therefore aligning in the double limit. If however the AT condition
is not satisfied, we observe q̃ < q , hence in the double limit the centred effective fields
are not perfectly correlated. They share a macroscopic Gaussian as a common trunk, but
retain an also macroscopic independent Gaussian part, that is reshuffled each iteration.

We will see through Stein’s method that the weak convergence of the re-centred ef-
fective fields give a new perspective on the AMP algorithms: In fact, the observed weak
convergence and law of large numbers are two sides of the same coin. To explain this
further we proceed with a high level sketch in the next section. Thereafter we discuss and
compare to previus work on the topic in Section 3. We then proceed to proof all results
step by step: discussing the approximate Gaussianity of effective fields by Stein’s method
in section 4 and a law of large numbers for covariances in Section 5. This leads to a deter-
ministic propagation of variances and covariances in the N-limit, which requires a fixed
point and contractivity analysis of φ and t → ψ(t,q,q) discussed in Section 6 to conclude
proofs in Section 7.

2. SKETCH OF THE PROOF AND THE IMAGE

In order to prove convergence of the algorithm (9) we develop a treatment which rad-
ically differs from [5, 6]: in a first step we will establish, by Stein’s method, optimal

N−bounds on the distance between the law of the random vector (Y
(k)
i )(i,k)∈I for some

fixed finite I ⊂ N×N and a "conditional" multivariate Gaussian, cfr. Theorem 6 below.

The Gaussian vector is centered with entries of variance β 2q
(k)
N , which are independent

for different sites (values of i).
By exchangeability, we will then deduce that

q
(k+1)
N ≡ 1

N

N

∑
i=1

tanh
(

h+Y
(k)
i

)2
≈ E

[

tanh

(

h+β

√

q
(k)
N Z

)2
∣

∣

∣

∣

∣

q
(k)
N

]

≡ φ
(

q
(k)
N

)

. (17)

In a third and final step we show contractivity of the φ -function for any β ,h, see The-
orem 23. The convergence of the algorithm will then follow from the convergence of

q
(k,k′)
N → q when N and then k,k′ → ∞ under the AT condition (4).

For L ∈ N and any choice of sites and iteration numbers i1, . . . , iL,k1, . . . ,kL ∈ N and
N ≥ maxl≤L il, consider the random vector

Y := (Y
(kl)
il

)l≤L . (18)

For r ∈ N we define the following spaces of test functions

H
r := { f ∈ C

r+1(RL,R) : |∂α f |∞ ≤ 1 for |α| ∈ {1, · · · ,r}, |∂α f |∞ < ∞ for |α|= r+1},
(19)

where α goes over every |α|-fold partial derivative (see (41), (42) for details). With this
we define the associated distances between the laws of integrable random variables on R

L

dr(X ,X ′) = sup
f∈H r

|E[ f (X)]−E[ f (X ′)]| . (20)

Integral probability metrics of this kind are well known and have been studied in e.g. [12]
and the references therein. We also consider a random vector

Z = (Z
(kl)
il

)l≤L , (21)
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which, conditionally on the q
·,·
N -s, is a multivariate centered Gaussian with covariance

Σ(l, l′) := E

[

Z
(kl)
il

Z
(kl′ )
il′

]

=

{

β 2q
(kl ,kl′ )
N if il = il′,

0 otherwise,
l, l′ = 1 . . .L . (22)

Theorem 6. (Proximity of the effective fields to a Gaussian). For all β ,h ∈ R and any

L ∈ N, (kl, il)l≤L ∈ (N×{1, · · · ,N})L, there exists C ≡C(k,L,β ,h)> 0 such that

d2 (Y,Z)≤ C√
N
, ∀N ∈ N . (23)

The above statement is in itself not conclusive: We still have to prove that the q-s, the
scalar products of the iterates , see (12), appearing in the covariance (22) converge in the
large-N,k limit. Theorem 7 below is the key step towards this fact. We will see that we
have an inductive relation between the q

·,·
N -s: Intuitively, it is due to the fact that

q
(k+1,k′+1)
N ≈Eq

(k+1,k′+1)
N =

N

∑
i=1

1

N
E

[

m
(k+1)
i m

(k′+1)
i

]

=E

[

tanh
(

h+Y
(k)
1

)

tanh
(

h+Y
(k′)
1

)]

≈E

[

tanh
(

h+Z
(k)
1

)

tanh
(

h+Z
(k′)
1

)]

=Eψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)

≈ψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)

,

(24)

the first and last equality by concentration and the first line to the second line by Theorem
6. The next theorem makes this precise. To state it we define for t ≥ 0

χ(t) := E
[

tanh(h+β
√

tZ)
]

. (25)

Theorem 7. (Propagation of the covariance entries). For any β ,h∈R, and k,k′ ≥ 1 there

exists C ≡C(k,k′,β ,h)> 0 such that:

E

[

(

q
(k+1,k′+1)
N −ψ

(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

))2
]

≤ C√
N

(26)

and

E





(

q
(k+1,1)
N −χ

(

q
(k)
N

) 1

N

N

∑
i=1

m
(1)
i

)2


≤ C√
N
. (27)

In case that q
(1)
N and 1

N ∑N
i=1 m

(1)
i converge as N → ∞, recursive application of The-

orem 7 implies that also q
(k,k′)
N has a limit in probability as N → ∞. By analysing the

k,k′ → ∞ limit, we obtain the convergence of q
(k,k′)
N from Theorem 3, which in turn seam-

lessly yields the convergence of the algorithm: see Proposition 1.

What thus stands behind our results, and is fully captured by the Stein’s method, is the
following beautiful picture: Provided the mean and radius of the starting magnetisations
converge we have for any choice of parameters (inverse of temperature and external field)
that any fixed family of effective fields converges weakly, in the infinite volume limit
(N → ∞), to a Gaussian field with covariances depending deterministically on limiting
starting radius and mean. This is due to the following interplay: the Gaussian convergence
(see Theorem 6) of re-centered effective fields implies a law of large numbers (see The-
orem 7) for the limiting covariance structure of re-centered effective fields one iteration
further. This procedure explains, how the highly non linear TAP-transformation leaves
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finitely many effective fields Gaussian and propagates the starting values only through
evolution of the covariance: perhaps surprisingly, this is true in any (β ,h)-phase.

Even more interesting is the limiting behaviour when the second limit is taken, that of
the iteration parameters: Here the picture does become (highly) parameter dependent as
well as fully independent of the starting conditions. This behaviour emerges as iterating
the propagation of the covariance structure approaches an attractive fixed point, which
turns out to be unique in all cases. This explains the vanishing dependence on starting
conditions3. See Theorem 3 and Proposition 5. The temperature dependence crucially
comes into play when analysing the fixed point. The system stabilises around a covari-
ance q̃. If the AT condition is satisfied we observe q̃ = q, which means that the effective
fields from iteration to iteration macroscopically align, i.e. we obtain approximate solu-
tions of the TAP equation. If the AT condition is not satisfied we observe q̃ < q hence
the re-centered effective fields, partially align around a singular Gaussian vector shared
among all iterations, but they retain some macroscopic randomness, which is indepen-
dently reshuffled each iteration. See Theorem 3. We now remark on the special case of
vanishing external field which exhibits some special behaviour:

• for vanishing external field and under the AT condition, i.e. h = 0 and |β | ≤ 1, the
iterates converge towards a degenerate Gaussian field of vanishing variance; this
is due to the variance propagation φ having 0 as a fixed point for h = 0, which is
unique and attractive iff |β | ≤ 1: indeed the variances of the effective fields turn
out to be approximate solutions of the limiting fixed point equation for the order
parameter of the theory (the q-function, in this case a scalar), and indeed converge
upon iteration to the unique fixed point. As in this case the unique solution is zero;
everything collapses to this trivial limit.

• for vanishing external field and |β | > 1 (in low temperature) the variances of the
limiting Gaussian field still converge to the same fixed point, and so do the co-
variances (!). Yet, and crucially: the limiting variance now is positive4, while
the covariances remain zero. Hence the effective fields are fully reshuffled each
iteration, leaving the iteration chaotic permanently.

Our proof via Stein thus unravels multiple aspects of the intricate behaviour of mean field
spin glasses, in particular those pertaining to the delicate interplay of almost sure phe-
nomena (such is the convergence of the elements of the covariance matrix of the limiting
Gaussian fields) and weak limits (of the effective fields). As a matter of fact, it is impossi-
ble to say which of these phenomena comes first : things are deeply intertwined, and can
hardly be disentangled.

As a final remark we want to mention, that this new method does not really depend on
the Gaussian nature of the disorder and the implementation of this method for other mean
fields models is left to future research.

3. PREVIOUS WORK: THE BOLTHAUSEN’S ALGORITHMUS

An algorithmic construction of the solutions to a modified version of (1) has been ob-
tained by Bolthausen [5, 6] (see also [10] for another iterative scheme), who studied the

3except for h = 0 and m(1) ≈ 0
4except for m(1) ≈ 0
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approximate version of TAP equations

mi = tanh

(

h+
β√
N

N

∑
j=1

gi jm j −β 2 (1−q)mi

)

i = 1 . . .N, (28)

where the EA-parameter qN from (1) is replaced by a scalar5 q. To avoid confusion,
we shall refer to the modified TAP equations (28) as B-TAP. Bolthausen’s algorithm for
B-TAP is initialised with the deterministic values

m
(0)
i := 0, m

(1)
i :=

√
q, ∀i ≤ N (29)

which are then propagated by a two step Banach procedure (k−1,k → k+1) given by

m
(k+1)
i = tanh

(

h+
β√
N

N

∑
j=1

gi jm
(k)
j −β 2 (1−q)m

(k−1)
i

)

, k ≥ 1. (30)

For h 6= 0, it is shown in the seminal paper [5] via some delicate analysis involving Gauss-
ian projections, conditioning techniques, and law of large numbers that the following
pseudo-convergence holds:

lim
k,l→∞

limsup
N→∞

1

N

N

∑
i=1

E

[

(

m
(k)
i −m

(l)
i

)2
]

= 0, (31)

if and only if (β ,h) satisfy the AT condition (4).

The above treatment, to our knowledge, is the only procedure available so far for a rigor-
ous analysis of B-TAP up to the AT line, but suffers from a number of shortcomings.

• First of all, the Onsager correction: by replacing qN , the random and finite-size
EA-order parameter, with q, the deterministic solution to (5) one artificially injects
a posteriori information into the model a priori: It does not allow to understand
whether the expected behaviour emerges by itself or was built in by this choice
of q and starting point. Indeed, by work of Plefka [17], the TAP equations are
known to be the critical points of the expansion of the Gibbs potential to second
order, but the Onsager correction (28) is not compatible with Plefka’s framework
nor with the original TAP derivation [21], see also [13, 14] for more on this (and
related) issue(s).

• A second delicate point is the initialisation (29): the B-TAP-algorithm is known
to converge for this very specific choice of starting value only, somewhat corre-
sponding to the odd situation where one solves a fixed point equation by starting
virtually ’in’ the solution. Since the procedure is but a sophisticated Banach-
iteration, this restriction is unnatural, and hides key phenomena concerning the
onset of the spin glass phase.

• A third point is that the Bolthausen algorithm does not allow to investigate the
case h = 0.

• Finally we want to make the point, that the sophisticated conditioning technique
developed by Bolthausen seems to be dependent on the Gaussian nature of the dis-
order, but certainly can only work if at least the effective fields are approximately
Gaussian. The method presented here is more robust in the sense that approximate
integration by parts and Stein operators for different distributions are established
tools, which allow approaching these scenarios.

5Corresponding, albeit only a posteriori, to the P-almost sure qN-limit.
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Nevertheless these magnetizations, provided by the pseudo-convergence, allowed Bolthausen
[6] to give a proof of the replica symmetric formula for the free energy of the SK model
in high temperature. Brennecke and Yau [7] proved an extension of this result. However,
neither result is valid for all (β ,h) satisfying the AT condition (4), which is believed to
separate the high-temperature from the low-temperature regime. Extending aforemen-
tioned results up to AT is an open problem.

Bolthausen’s algorithm and conditioning techniques have found wide applications, in par-
ticular they have been used by Montanari and coauthors to analyse Approximate Message
Passing (AMP for short) in a large class of models, see [2, 3, 4] and references therein,
see also [22] for a theoretical physics’ take. As our approach does not require Gaussian
disorder we belief that this new method is applicable to an even wider range of models and
problems. Also considering the possibility of adapting Stein’s method e.g. to the diluted
case where the limiting distribution of effective fields is expected to be non Gaussian, by
considering an appropriate Stein operator.

4. STEIN TAP

4.1. Overview. The main objective of this section is to prove Theorem 6 using Stein
equation. Before we tackle this task we prove Proposition 5 from Theorem 3 and 6.

Proof of Proposition 5. Clearly

d2 (Y,Z )≤ d2 (Y,Z)+d2 (Z,Z ) , (32)

where the first term tends to 0 as N → ∞ by Theorem 6. By Theorem 3 Σ converges to Σ∞

as N → ∞ followed by k1, ..,kL → ∞. Now we consider the simple coupling Z = Σ1/2Z

and Z = Σ
1/2
∞ Z, for a standard Gaussian vector Z independent of Σ and use for f ∈ H 2

the estimate

EE| f (Z )− f (Z)| ≤ |‖∇ f‖2|∞ E‖Z‖2E‖Σ1/2 −Σ1/2
∞ ‖op ≤ LE‖Σ1/2 −Σ1/2

∞ ‖op, (33)

Since all operations involved on the r.h.s. are continuous in the entries of Σ we see that
the second term of (32) vanishes with N → ∞ followed by k1, ..,kl →∞, since the operator
norm involved is bounded:

‖Σ1/2‖op ≤ ‖Σ1/2‖F ≤ L|Σ1/2|∞ ≤ L
√

|diag(Σ)|∞ ≤ Lβ ,

where ‖.‖F is the Frobenius norm. From (32) vanishing, we obtain the asserted weak
convergence, since the vector space of finite linear combinations of H 2 functions is dense
in the continuous functions when restricting to a compact by Stone Weierstrass Theorem.
The restriction to compact support is then removed using tightness of both sequences,
which holds since the covariance matrices in question have entries bounded uniformly in
N. �

We will work with test functions in H 2, since it is suitable to prove weak convergence,
includes tanh and matches nicely with the regularity the Stein operator provides. To acco-
modate for Σ in Theorem 6 being random we slightly modify the classical Stein equation.
One easily checks that Σ is in fact symmetric and positive semi-definite, and consequently
Σ1/2 exists and is symmetric. For Z a standard Gaussian on R

L, F ∈ C 3(RL,R) with
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|∂αF|∞ < ∞ for |α| ∈ {1,2,3} we define

VF(x) =−
∫ ∞

0
EZ

[

F(xe−u +
√

1− e−2uZ)
]

−EZ [F(Z)]du.

By the multivariate Stein equation (see e.g. Lemma 2.6 in [9]),

F (x)−EZF (Z) = Tr∇2VF (x)− xT ∇VF (x) . (34)

For f ∈ H 2 we define

v(y) =−
∫ ∞

0
EZ

[

f (ye−u +
√

1− e−2uΣ1/2Z)
]

−EZ [ f (Σ
1/2Z)]du,

where we recall that EZ is the expectation only over Z, which is chosen to be independent
of everything else, i.e. of the

(

gi j

)

and m(1), hence also of Σ.
Observe that by choosing

F (y) = f
(

Σ1/2y
)

, verifying VF (y) = v(Σ1/2y)

and plugging into (34) with x = Σ1/2y, we obtain

f (x)−EZ f
(

Σ1/2Z
)

= Tr
(

Σ∇2v(x)
)

− xT ∇v(x) . (35)

Now note that for |α| ∈ {1,2,3}

∂αv(y) =−
∫ ∞

0
e−u|α|

EZ

[

∂α f (ye−u +
√

1− e−2uΣ1/2Z)
]

du, (36)

which gives us v ∈ H 2, since f ∈ H 2 by assumption and

|∂αv|∞ ≤ 1

|α| |∂α f |∞. (37)

Using x =
(

Y
(kl)
il

)

l≤L
in (35), writing vl = ∂el

v and taking expectations we have

E f
(

(Y
(k j)
i j

) j≤L

)

−E f
(

ZΣ(i, j)

)

(38)

= E

[

Tr
(

Σ∇2v
(

(Y
(k j)
i j

) j≤L

))]

−E

[

(Y
(k j)
i j

)T
j≤L∇v

(

(Y
(k j)
i j

) j≤L

)]

=
L

∑
l=1

E

[

β 2
L

∑
l′=1

δil ,il′
(m(kl))T m(kl′)

N
∂el′vl

]

−E

[

Y
(kl)
il

vl

]

(39)

where we simplify notation by suppressing the argument of vl , which is (Y
(k j)
i j

) j≤L. In
order to prove Theorem 6, it remains to show that the r.h.s. is bounded in absolute value
by C/

√
N. To this end we need to control the following quantities:

∆
(k)
x;y,z :=

β√
N

∑
l

gx,ldyz m
(k)
l −dyz On

(k)
x , E

(k)
x :=

β√
N

∑
l 6=x

dxl m
(k)
l −On

(k)
x . (40)

This is the object of study of our next Theorem, which is shown in Section 4.3.

Theorem 8. For β ∈ R, k ∈ N there exists C =Ck,β > 0, s.t.

E

[

(

∆
(k)
x;y,z

)2
]

≤ C

N2
and E

[

(

E
(k)

x

)2
]

≤ C

N

for all h ∈ R, N ∈ N and x,y,z ≤ N with y 6= z.
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To derive Theorem 8, a fundamental understanding of the magnitude of derivatives of
m with respect to g is required. To this end, we introduce some notation. First we use
multiindex notation, i.e. for

α ∈ N
p

0, where p≡ pN := {{i, j} : 1 ≤ i < j ≤ N} (41)

we use the shorthands

|α| := ∑
x∈p

αx, α! := ∏
x∈p

αx! and ∂α := ∏
x∈p

(dx)
αx , (42)

also recalling the convention di j =
d

dgi j
. Additionally, for any e ∈ p we write δe ∈ N

p

0 to

refer to the vector with a 1 in the e-coordinate and otherwise zeros. Finally, we associate to
each multiindex α ∈N

p

0 the undirected multigraph on V = {i : ∃ j : α{i, j} > 0} with α{i, j}
edges between vertices i and j. This allows us to use α as a multiindex and its associated
multigraph interchangibly. Consequently i ∈α means ∃ j : α{i, j} > 0 and {i, j}∈α means
α{i, j} > 0. The following key observation is proved in Section 4.2.

Theorem 9. For β ∈ R, t,k ∈ N there exists C ≡C|α|,t,k,β > 0, such that

E

[

(√
N
|α|+Cα(p)

∂αm
(k)
p

)2t
]

≤C (43)

for all α ∈ N
p

0, N ∈ N, p ≤ N, h ∈ R and where Cα(p) denotes the number of connected

components in α that do not contain p.

In the applications, we only use the case t = 1. However, the proof of this Theorem is
by induction on k and requires all t.

Remark 10. By taking conditional expectations, the starting values m(0), m(1) can be

replaced by random ones that are independent of g (the constants in our results do not

depend on m(0), m(1)). As the proof shows, Theorem 9 also holds if the starting values

m(0), m(1) of the iteration depend on g as long as they satisfy (43). The assumption that

m(0) and m(1) are independent of g becomes crucial in the proof of (27) in Theorem 7.

Building on Theorems 8 and 9, we now infer:

Proof of Theorem 6 (using Theorems 8 and 9). It remains to show that the r.h.s. of (38) is
bounded in absolute value by C/

√
N, which we do for each summand, i.e. each l. Using

Gaussian integration by parts, the representation (36) of vl , and the definitions (40), we
obtain

E

[

Y
(kl)
il

vl

]

=E

[

E
(kl)
il

vl

]

+E

[

∑
j≤L

β√
N

∑
a6=il

m
(kl)
a (dilaY

(k j)
i j

)∂e j
vl

]

+E

[

∑
j≤L

β√
N

∑
a6=il

m
(kl)
a F

j
ila

]

(44)
where

F
j

ila
=−

∫ ∞

0
e−u
√

1− e−2uEZ

[

((dilaΣ1/2)Z) j∂e j+el
f (Ye−u +

√

1− e−2uΣ1/2Z)
]

du

(45)

and Y = (Y
(k j)
il

) j≤L.
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By simply using that (EX)2 ≤ E
(

X2
)

, we get that the last expectation in (44) has
absolute value bounded by the square root of

β 2

N
∑

a,a′ 6=il

E

[(

∑
j≤L

m
(kl)
a F

j
ila

)(

∑
j′≤L

m
(kl)
a′ F

j′

ila
′

)]

=
β 2

N
∑

a,a′ 6=il

E

[

m
(kl)
a m

(kl)
a′

(

∑
j≤L

F
j

ila

)(

∑
j′≤L

F
j′

ila
′

)]

,

which in turn is bounded by

≤ β 2

N
∑

a,a′ 6=il

E





(

∑
j≤L

F
j

ila

)2




1/2

E





(

∑
j′≤L

F
j′

ila
′

)2




1/2

≤Cβ ,k,LN−1

by Cauchy-Schwarz, and the following Lemma, which is shown at the end of this proof.

Lemma 11. Let F
j

ila
be defined by (45). Then, there exists a constant C = Ck,β ,L such

that

E





(

L

∑
j=1

F
j

il ,a

)2


≤CN−2.

We thus conclude that
∣

∣

∣

∣

∣

E

[

∑
j≤L

β√
N

∑
a6=il

m
(kl)
a F

j
ila

]∣

∣

∣

∣

∣

≤Cβ ,k,LN−1/2 (46)

To compute the second summand in (44), we consider derivatives of Y , which are given
by

dyzY
(k)
x =

β√
N

∑
b6=x

δ{b,x}{y,z}m
(k)
b +∆

(k)
x;y,z. (47)

Hence we have

β√
N

∑
a6=il

m
(kl)
a dilaY

(k j)
i j

=
β 2

N
∑

a6=il ,b6=i j

δ{b,i j}{il ,a}m
(kl)
a m

(k j)
b +

β√
N

∑
a6=il

m
(kl)
a ∆

(k j)
i j;il,a

= β 2δil i j
q
(kl ,k j)
N +

β√
N

∑
a6=il

m
(kl)
a ∆

(k j)
i j;il ,a

+O(N−1),

(48)

where the O(N−1) terms is only due to a difference of form ±N−1β 2m(.)
. m(.)

. . Plugging

(48) into (44) and this into the r.h.s. of (38) we see that the β 2δil i j
q
(kl ,k j)
N term in (48)

cancels with the first part of each summand on the r.h.s of (38). Hence up error of size at
most Cβ ,k,L/

√
N by (46), the l-th summand on the r.h.s. of (38) equals

E[E
(kl)
il

vl]+
L

∑
l′=1

E

[

β√
N

∑
a6=il

m
(kl)
a ∆

(kl′)
il′ ;il ,a

∂el′vl

]

. (49)

Since |vl|∞ ≤ 1 by (37) and using Jensen or Cauchy-Schwarz the first expectation is
at most Cβ ,kN−1/2 by Theorem 8. Similarly estimating the second expectation using
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|m|, |∂e′
l
vl|∞ ≤ 1 we obtain

|E
[

β√
N

∑
a6=il

m
(kl)
a ∆

(kl′ )
il′ ;il ,a

∂el′vl

]

| ≤ β
√

N max
a6=il

E[|∆(kl′)
il′ ;il,a

|]≤Cβ ,k

√
N max

a6=il

√

E

[

(

∆
(kl′ )
il′ ;il ,a

)2
]

.

Application of Theorem 8 shows that the r.h.s. in the last display is bounded by Cβ ,kN−1/2.

Hence, the r.h.s. in (38) is bounded by Cβ ,k,LN−1/2 as asserted. We now come back to the
last missing piece, which is the

Proof of Lemma 11. By Gaussian integration by parts,

L

∑
j=1

F
j

ila
=−

L

∑
j=1

∫ ∞

0
e−u
√

1− e−2uEZ

[

((dilaΣ1/2)Z) j∂e j+el
f (Ye−u +

√

1− e−2uΣ1/2Z)
]

du

=−
∫ ∞

0
e−u(1− e−2u)

.
L

∑
j,p,t=1

EZ

[

((dilaΣ1/2)) jp(Σ
1/2)t p∂e j+el+et

f (Ye−u +
√

1− e−2uΣ1/2Z)
]

du. (50)

As Σ1/2 is symmetric we have dilaΣ = dila(Σ
1/2Σ1/2) = Σ1/2dilaΣ1/2 +(dilaΣ1/2)Σ1/2, the

sum in the last line equals

S(u) : = EZ

[

tr
(

(dilaΣ1/2)Σ1/2(∇2∂el
f )(Ye−u +

√

1− e−2uΣ1/2Z)
)]

= EZ

[

tr
(

Σ1/2(dilaΣ1/2)(∇2∂el
f )(Ye−u +

√

1− e−2uΣ1/2Z)
)]

= EZ

[

tr
(

1
2(dilaΣ)(∇2∂el

f )(Ye−u +
√

1− e−2uΣ1/2Z)
)]

.

The middle equality due to the trace being invariant under transposition as well as cyclic
permutation of products. By Cauchy-Schwarz, the expression in the last display is less
than

S(u)≤ 1
2EZ

[

√

tr((dilaΣ)2) tr
(

(∇2∂el
f )2(Ye−u +

√

1− e−2uΣ1/2Z)
)

]

.

As |∂el+er+es
f |∞ ≤ 1, it follows that

E
[

S(u)2]≤ L2
E
(

tr
(

(dilaΣ)2))= L2
L

∑
r=1

L

∑
s=1

E
(

(dilaΣrs)
2) .

By (22),

(dilaΣrs)
2 ≤

(

dila
β 2

N

N

∑
i=1

m
(kr)
i m

(ks)
i

)2

=

(

β 2

N

N

∑
i=1

m
(kr)
i dilam

(ks)
i +

β 2

N

N

∑
i=1

m
(ks)
i dilam

(kr)
i

)2

.

Using the fact that (a+b)2 ≤ 2(a2 +b2), we obtain

E

[

(dilaΣrs)
2
]

≤ 2
β 4

N2

N

∑
i, j=1

E

[

m
(kr)
i (dilam

(ks)
i )m

(kr)
j (dilam

(ks)
j )
]

+E

[

m
(ks)
i (dilam

(kr)
i )m

(ks)
j (dilam

(kr)
j )
]

.
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By Cauchy-Schwarz, the first term on the r.h.s. of the latter is smaller than

≤ 2
β 4

N2

N

∑
i, j=1

E

[

(

dilam
(ks)
i

)2
]1/2

E

[

(

dilam
(ks)
j

)2
]1/2

≤Cβ ,kN−2,

and exactly the same estimate holds for the second term. The last inequality follows as

the second moments in the last display are ≤Cβ ,kN
−1−1i/∈{il ,a} and ≤Cβ ,kN

−1−1 j/∈{il ,a
′} by

Theorem 9. Plugging these estimates into (50) and using Cauchy-Schwarz inequality, we
obtain

E





(

L

∑
j=1

F
j

il ,a

)2


=

∫∫ ∞

0
−e−u−u′(1−e−2u)(1−e−2u′)E

[

S(u)2
]1/2

E
[

S(u′)2
]1/2

dudu′

≤Cβ ,k,LN−2

as asserted. �

�

4.2. Controlling derivatives / Proof of Theorem 9. In the proof, we use the following
consequence of the Hölder inequality which can be shown by induction: For any n ∈ N

and random variables X1, . . . ,Xn in Ln(P), we have

E [X1 · · ·Xn]
n ≤ E [|X1|n] · · ·E [|Xn|n] . (51)

Proof of Theorem 9. We show (43) by induction on k. The base clauses, k = 1 for choice
(II) and k = 0,1 for (I), hold, since the starting values are independent of g. From here
on we may assume that the assertion is correct up to k−1, but before this will be helpful
some preparation and computation is needed. To this end we write A � B if A ≤ CB for
a C > 0 that depends on β , t,k, |α| only and denote by tanh(s) the s-th derivative of tanh.
By the generalized Faa di Bruno formula (see e.g. [11, Corollary 2.10], [15]), for each
α ∈ N

p

0 with |α| ≥ 1,

∂αm
(k)
p = α! ∑

(σ ,s)∈P(α)

tanh(|s|)(h(k)p )∏
ℓ

1

sℓ!

(

∂σℓh
(k)
p

σℓ!

)sℓ

, (52)

where

P(α) :=







(σ ,s) ∈
|α|
⋃

u=1

(

(Np

0)
u ×N

u
)

: ∑
i

siσi = α, 0 < σ1 < .. . < σu







.

Note that "<" in this definition can be chosen to be any order on N
p

0 with minimal element
0. From (52) we immediately obtain the representation

E

[

(

∂αm
(k)
p

)2t
]

= ∑
(σ (b),s(b))b∈P(α)2t

E









2t

∏
b=1

α! tanh(|s
(b)|)(h(k))∏

ℓ

1

s
(b)
ℓ !





∂
σ
(b)
ℓ

h
(k)
p

σ
(b)
ℓ !





s
(b)
ℓ









.

Roughly estimating all terms independent of N and using that derivatives of tanh are
bounded (since they are polynomials in tanh) we obtain
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� ∑
(σ (b),s(b))b∈P(α)2t

E





2t

∏
b=1

∏
ℓ

∣

∣

∣

∣

∂
σ
(b)
ℓ

h
(k)
p

∣

∣

∣

∣

s
(b)
ℓ





≤ ∑
(σ (b),s(b))b∈P(α)2t

2t

∏
b=1

∏
ℓ

E





(

∂
σ
(b)
ℓ

h
(k)
p

)2t dim(s(b))s
(b)
ℓ





1

2t dim(s(b))

,

the last step by the Hölder inequality (51) and dim mapping a vector to its dimension.
Finally we estimate by worst case scenario using that the number of summands does not
depend on N to obtain

� max
(σ ,s)∈P(α)

∏
ℓ

E

[

(

∂σℓh
(k)
p

)2t dim(s)sℓ
]

1
dim(s)

. (53)

Computing derivatives of h from its definition yields

∂γh
(k)
p = N−1/2 ∑

i

gp,i∂γ m
(k−1)
i +N−1/2 ∑

i

1γ{p,i}>0∂γ−δ{p,i}m
(k−1)
i +∂γ On

(k−1)
p (54)

for any γ ∈ N
p

0 and writing δ{p,i} for the vector that has all zeros except a single one in
the {p, i} coordinate. We use {, } here to indicate that {p, i} and {i, p} refer to the same
coordinate. Also note that by slight abuse of notation if i = p we set the indicator to
zero. Combining (54) with the elementary estimate (a+b+ c)2n ≤ 32n(a2n +b2n + c2n)
we obtain for m ∈ N0,n � 1

E

[

(

∂γh
(k)
p

)2n
]

� N−n
E





(

∑
i

gp,i∂γm
(k−1)
i

)2n




+N−n
E





(

∑
i

1γ{p,i}>0∂γ−δ{p,i}m
(k−1)
i

)2n


+E

[

(

∂γ On
(k−1)
p

)2n
]

.

Each of these expectations will be handled separately by the the following Lemmata:

Lemma 12. Assuming that the assertion of Theorem 9 holds up to k − 1 we have for

n, |γ| � 1 that

E





(

∑
i

gp,i∂γm
(k−1)
i

)2n


� Nn(1−|γ |−Cγ (p))

Lemma 13. Assuming that the assertion of Theorem 9 holds up to k − 1 we have for

n, |γ| � 1 that

E





(

∑
i

1γ{p,i}>0∂γ−δ{p,i}m
(k−1)
i

)2n


� Nn(1−|γ |−Cγ (p))

Lemma 14. Assuming that the assertion of Theorem 9 holds up to k − 1 we have for

n, |γ| � 1 that

E

[

(

∂γ On
(k−1)
p

)2n
]

� Nn(−|γ |−Cγ (p))
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Given Lemmata 12, 13, 14 we have

E

[

(

∂γ h
(k)
p

)2n
]

� N−n(|γ |+Cγ (p))

for n � 1. Consequently, by (53) and recalling that ∑i siσi = α , the claim follows since

E

[

(

∂αm
(k)
p

)2t
]

� max
(σ ,s)∈P(α)

∏
ℓ

N−tsℓ(|σℓ|+Cσℓ
(p)) = N−t(|α|+min(σ ,s)∈P(α)∑ℓ sℓCσℓ

(p)).

This concludes the proof, as ∑ℓ sℓCσℓ(p)≥ Cα(p) for (σ ,s) ∈ P(α), where the inequal-
ity holds as decomposition into subgraphs can only increase the number of connected
components. �

We now return to the proofs for Lemmata 12, 13, 14.

Proof of Lemma 12. Since

E





(

N

∑
i=1

gp,i∂γ m
(k−1)
i

)2n


=
N

∑
i1,...,i2n=1

E

[

2n

∏
l=1

gp,il ∂γm
(k−1)
il

]

,

we define Ai for i = (i1, . . . , i2n) to be the set or indices with unique i’s, i.e the set con-
taining those l ∈ {1, ..,2n}, s.t. #{l′ : il = il′} = 1. By Gaussian partial integration with
respect to all gp,il with l ∈ Ai we obtain

E

[

2n

∏
l=1

gp,il ∂γm
(k−1)
il

]2

= E

[(

∏
l∈Ac

i

gp,il

)(

∏
l∈Ai

dpil

)

2n

∏
l=1

∂γ m
(k−1)
il

]2

,

which is by Cauchy-Schwarz at most

≤ E





(

∏
l∈Ac

i

gp,il

)2


E





((

∏
l∈Ai

dpil

)

2n

∏
l=1

∂γm
(k−1)
il

)2


 . (55)

By Leibniz rule we have the identity
(

∏
l∈Ai

dpil

)

2n

∏
l=1

∂γ m
(k−1)
il

= ∑
τ∈M (i)

2n

∏
l=1

∂γ+τl
m
(k−1)
il

,

where

M (i) :=

{

τ ∈ (Np

0)
2n :

2n

∑
l=1

τl = ∑
l∈Ai

δ{p,il}

}

.

Since the first term in (55) is � 1 we see that (55) is bounded by

� ∑
τ,τ ′∈M (i)

E

[(

2n

∏
l=1

∂γ+τl
m
(k−1)
il

)(

2n

∏
l′=1

∂γ+τ ′
l′
m
(k−1)
il

)]

,

which in turn, estimating the product by the Hölder inequality (51) and using |Ai| � 1, is
bounded by

�
(

max
τ∈M (i)

2n

∏
l=1

E

[

(

∂γ+τl
m
(k−1)
il

)4n
]1/4n

)2

.
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By the assertion of Theorem 9 for k−1,

E

[

(

∂γ+τl
m
(k−1)
il

)4n
]1/4n

�
√

N
−|γ+τl|−Cγ+τl

(il)
=

√
N
−|γ |−|τl|−Cγ+τl

(il)
.

Hence we overall obtain the estimate

E





(

N

∑
i=1

gp,i∂γm
(k−1)
i

)2n


�
N

∑
i1,...,i2n=1

N−n|γ |−|Ai|/2−minτ∈M ( j)∑2n
l=1 Cγ+τl

(il)/2. (56)

Since Cγ+τl
(il) and Cγ+τl

(p) are identical up to one component that is possibly not
counted, and since all edges in τl contain p, we have

Cγ+τl
(il)≥ Cγ+τl

(p)−1il∈γ ,τl=0 ≥ Cγ(p)−1il∈γ − ∑
l′∈Ai

1il′∈γ ,il′∈τl
, (57)

where the second estimate is due to each entry in τl at most removing a single component
from the count by connecting it to p. By definition of Ai and τ note that ∑2n

l=1 1il′∈τl
= 1

for each l′ ∈ Ai. Therefore summing (57) over l yields

2n

∑
l=1

Cγ+τl
(il)≥ 2nCγ(p)−2 ∑

l∈Ai

1il∈γ − ∑
l∈Ac

i

1il∈γ . (58)

Now estimating the minimum in (56) with (58) yields

E





(

N

∑
i=1

gp,i∂γm
(k−1)
i

)2n


� Nn(1−|γ |−Cγ (p))
N

∑
i1,...,i2n=1

N
−n−|Ai|/2+∑l∈Ai

1il∈γ+∑l∈Ac
i

1il∈γ/2

It remains to show, that the sum on the r.h.s. is � 1 for any choice of γ with |γ| � 1. To this
end we decompose the sum into two parts. First we sum over all partitions of {1, ..,2n},
P∈P2n say, and then we decide one by one for each block a number in {1, ..,N} that was
not taken by a previous block. Here we decide first which of the i take the same values,
and then we assign these values. This yields

N

∑
i1,...,i2n=1

N
−n−|Ai|/2+∑l∈Ai

1il∈γ+∑l∈Ac
i

1il∈γ/2
= ∑

P∈P2n

∑
1≤iB1

<...<iBL
≤N

{B1,...,BL}=P

L

∏
l=1

√
N
(|Bl |+1|Bl |=1)(1iBl

∈γ−1)

(59)
since

−2n−|Ai|+2 ∑
l∈Ai

1il∈γ + ∑
l∈Ac

i

1il∈γ =−2n−|Ai|+ ∑
l∈Ai

1il∈γ +
2n

∑
l=1

1il∈γ

=
L

∑
l=1

(|Bl|+1|Bl|=1)(1iBl
∈γ −1).

Estimating by dropping the restriction to distinct values for iB we obtain

(59) ≤ ∑
P∈P2n

∏
B∈P

N

∑
iB=1

√
N
(|B|+1|B|=1)(1iB∈γ−1)

.

If iB ∈ γ , then the the exponent is zero and there are |γ| such choices in the inner sum. If
however iB 6∈ γ , then the exponent is at most −2 and therefore the inner sum is at most
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one. Hence the inner sum is at most 1+ |γ| and using that the number of partitions, factors
and |γ| are all � 1 the claim follows. �

Proof of Lemma 13. Expanding and using the Hölder inequality (51) yields

E





(

∑
i

1γ{p,i}>0∂γ−δ{p,i}m
(k−1)
i

)2n


= ∑
i1,..,i2n

E

[

2n

∏
l=1

1γ{p,il}>0∂γ−δ{p,il}
m
(k−1)
il

]

≤ ∑
i1,..,i2n

2n

∏
l=1

1γ{p,il}>0E

[

(

∂γ−δ{p,il}
m
(k−1)
il

)2n
]1/2n

=

(

∑
i

1γ{p,i}>0E

[

(

∂γ−δ{p,i}m
(k−1)
i

)2n
]1/2n

)2n

.

By the assertion of Theorem 9 for k−1 we estimate

�
(

∑
i

1γ{p,i}>0(
√

N)
−|γ |+1−Cγ−δ{p,i}(i)

)2n

.

The claim follows, since |{i : γ{p,i} > 0}| � 1 and Cγ−δ{p,i}(i)≥ Cγ(i) = Cγ(p) if γ{p,i} >
0. �

Proof of Lemma 14. We start by assuming choice (II). Then, expanding and applying the
Hölder inequality (51) inequality yields

E

[

(

∂γ On
(k−1)
p

)2n
]

≤
(

β√
N

)2n

∑
i1,...,i2n

2n

∏
l=1

E

[

(

∂γ+δ{il ,p}
m
(k−1)
il

)2n
]1/2n

.

By the assertion of Theorem 9 for k−1 we further estimate

�
(

β√
N

)2n

∑
i1,...,i2n

2n

∏
l=1

N
−|γ |+1

2 −
Cγ+δ{il ,p}

(il)

2 = β 2nN−2n−n|γ | ∑
i1,...,i2n

N
−1

2 ∑2n
l=1 Cγ+δ{il ,p}

(il)
.

(60)
Using that that

Cγ+δ{il ,p}
(il) = Cγ+δ{il ,p}

(p)≥ Cγ(p)−1il∈γ ,

we get

(60) � N−2n−n|γ |−nCγ (p) ∑
i1,...,i2n

N
1
2 ∑2n

l=1 1il∈γ = N−n|γ |−nCγ (p)
2n

∏
l=1

1

N

N

∑
il=1

√
N

1il∈γ
, (61)

and the claim follows. Next, we consider choice (I). Using that (a+ b)2n ≤ 22na2n +
22nb2n, we obtain

E

[

(

∂γ On
(k−1)
p

)2n
]

� E

[

(

∂γm
(k−2)
p

)2n
]

+N−2n
E





(

N

∑
i=1

∂γ

(

m
(k−1)
i

2
m
(k−2)
p

)

)2n


 .

(62)
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By the assertion of Theorem 9 we immediately obtain the desired � N−n|γ |−nCγ (p) for the
first summand. Analysing the second we observe by the Leibniz rule,

∂γ

(

m
(k−1)
i

2
m
(k−2)
p

)

= ∑
ρ,σ ,τ∈Np

0
ρ+σ+τ=γ

(

γ

ρ σ τ

)

(

∂ρ m
(k−1)
i

)(

∂σ m
(k−1)
i

)(

∂τ m
(k−2)
p

)

.

Hence expanding and estimating by the Hölder inequality (51) yields

N−2n
E





(

N

∑
i=1

∂γ

(

m
(k−1)
i

2
m
(k−2)
p

)

)2n




� N−2n ∑
i1,...,i2n

∑
ρl ,σl ,τl∈Np

0
ρl+σl+τl=γ ,l=1,...,2n

2n

∏
l=1

E

[

(

∂ρl
m
(k−1)
il

)6n
]1/6n

E

[

(

∂σl
m
(k−1)
il

)6n
]1/6n

E

[

(

∂τl
m
(k−2)
p

)6n
]1/6n

.

By the assertion of Theorem 9 we further estimate

� N−2n ∑
i1,...,i2n

∑
ρl ,σl ,τl∈Np

0
ρl+σl+τl=γ ,l=1,...,2n

2n

∏
l=1

N
−|ρl |

2 −
Cρl

(il)

2 N
−|σl |

2 −
Cσl

(il)

2 N
−|τl |

2 −
Cτl

(p)

2 . (63)

By definition of C

Cρl
(il)≥ Cρl

(p)−1il∈γ , Cσl
(il)≥ Cσl

(p)−1il∈γ

as well as
Cρl

(p)+Cσl
(p)+Cτl

(p)≥ Cρl+σl+τl
(p) = Cγ(p)

hold. Using these facts as well as |γ| � 1 the claim follows:

(63) � N−n|γ |−nCγ (p) ∑
i1,...,i2n

N∑2n
l=1(1il∈γ−1) = N−n|γ |−nCγ (p)

2n

∏
l=1

N

∑
i=1

N1il∈γ−1 � N−n|γ |−nCγ (p)

�

4.3. Estimating error terms / Proof of Theorem 8. Theorem 8 is a direct consequence
of the following Lemmata by considering α = 0, t = 1 in Lemma 15 and α = δ{y,z}, t = 1
as well as α = 0, t = 1 in Lemma 16. We write Cα for the number of connected compo-
nents in the multigraph associated to α .

Lemma 15. For β ,h ∈ R, k, t ∈ N, N ∈ N, x,y,z ≤ N with y 6= z, α ∈ N
p

0, there exists

C =Ck,|α|,β ,h,t > 0, s.t.

E

[

(

∂α

(

∆
(k)
x;y,z −∂δ{y,z}E

(k)
x

))2t
]

≤CN
−t
(

|α|+1x 6∈α+Cα+δ{y,z}

)

.

Lemma 16. For β ≥ 0, h∈R, k, t ∈N, N ∈N, x≤N, α ∈N
p

0, there exists C =Ck,|α|,β ,h,t >
0, s.t.

E

[

(

∂αE
(k)
x

)2t
]

≤CN−t(|α|+1x 6∈α+Cα).
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Proof of Lemma 15. Writing α̂ := α +δ{y,z} to shorten notation we have by definition of
∆ and E that

∂α

(

∆
(k)
x;y,z −∂δ{y,z}E

(k)
x

)

=
β√
N

∑
j

(

g j,x∂α̂m
(k)
j −∂α̂+δ{ j,x}m

(k)
j

)

+
β√
N

∑
j

1{ j,x}∈α∂α̂−δ{ j,x}m
(k)
j .

Hence

E

[

(

∂α

(

∆
(k)
x;y,z −∂δ{y,z}E

(k)
x

))2t
]

�N−t
E





(

∑
j

(

g j,x∂α̂m
(k)
j −∂α̂+δ{ j,x}m

(k)
j

)

)2t


+N−t
E





(

∑
j

1{ j,x}∈α∂α̂−δ{ j,x}m
(k)
j

)2t


 .

(64)
Using that |α|, t � 1 we can estimate the second expectation by

E





(

∑
j

1{ j,x}∈α∂α̂−δ{ j,x}m
(k)
j

)2t


�∑
j

1{ j,x}∈αE

[

(

∂α̂−δ{ j,x}m
(k)
j

)2t
]

�N−t(|α|+Cα̂−1x∈α)

(65)
the last step by Theorem 9 and since for x ∈α we have Cα̂−δ{ j,x}( j)≥Cα̂(x)≥Cα̂ −1x∈α .
It remains to control the first expectation in (64). To this end we expand and collect same
j, i.e. for P2t the set of partitions of {1, ..,2t} and writing [i] for the block in P containing
i we have

E





(

∑
j

(

g j,x∂α̂m
(k)
j −∂α̂+δ{ j,x}m

(k)
j

)

)2t


=

∑
P∈P2t

∑
1≤ jB1<...< jBL

≤N

{B1,...,BL}=P

E

[

2t

∏
i=1

(

g j[i],x∂α̂m
(k)
j[i]
−∂α̂+δ{ j[i] ,x}

m
(k)
j[i]

)

]

By Gaussian partial integratian a factor g j[i],x∂γm
(k)
j[i]
−∂γ+δ{ j[i] ,x}

m
(k)
j[i]

has the same effect as

taking the derivative w.r.t. g j[i],x and then multiplying by ∂γ m
(k)
j[i]

. I.e. for any random vari-

able Z such that the following is defined we have E[

(

g j[i],x∂γm
(k)
j[i]
−∂γ+δ{ j[i] ,x}

m
(k)
j[i]

)

Z] =

E[∂γm
(k)
j[i]

∂δ{ j[i] ,x}
Z]. Applying this for all i such that |[i]|= 1 and by product rule we obtain

the representation

= ∑
P∈P2t

∑
1≤ jB1

<...< jBL
≤N

{B1,...,BL}=P

∑
τ

E









∏
i=1,..,2t:
|[i]|=1

∂α̂+τi
m
(k)
j[i] ∏

i=1,..,2t:
|[i]|>1

(

g j[i],x∂α̂+τi
m
(k)
j[i]

−∂α̂+τi+δ{ j[i],x}
m
(k)
j[i]

)









,
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where the τ-sum is over all τ1, . . . ,τ2t ∈ N
p

0, s.t. ∑i τi = ∑i:|[i]|=1 δ{ j[i],x} and { j[i],x} 6∈ τi.
Hence estimating by generalized Hölder inequality yields

� ∑
P∈P2t

∑
1≤ jB1

<...< jBL
≤N

{B1,...,BL}=P

∑
τ

∏
i:|[i]|=1

E

[

(

∂α̂+τi
m
(k)
j[i]

)2t
]1/2t

∏
i:|[i]|>1

E

[

(

g j[i],x∂α̂+τi
m
(k)
j[i]
−∂α̂+τi+δ{ j[i],x}

m
(k)
j[i]

)2t
]1/2t

. (66)

Using that E[g2t
.,.]� 1 for any t � 1, Hölder inequality and applying Theorem 9 gives

E

[

(

g j[i],x∂α̂+τi
m
(k)
j[i]

)2t
]

,E

[

(

∂α̂+τi+δ{ j[i],x}
m
(k)
j[i]

)2t
]

,E

[

(

∂α̂+τi
m
(k)
j[i]

)2t
]

� N
−t(|α̂|+|τi|+Cα̂+τi

( j[i])). (67)

Hence we obtain estimating (66)

E





(

∑
j

(

g j,x∂α̂m
(k)
j −∂α̂+δ{ j,x}m

(k)
j

)

)2t




� ∑
P∈P2t

∑
1≤ jB1

<...< jBL
≤N

{B1,...,BL}=P

∑
τ

2t

∏
i=1

N
− 1

2(|α̂|+|τi|+Cα̂+τi
( j[i])). (68)

Estimating Cα̂+τi
( j[i])≥ Cα̂ −1 j[i]∈α̂ −∑i′ 1 j[i′]∈τi, j[i′]∈α̂ and collecting terms using |[i′]|=

1 ⇔ j[i′] ∈ ∑i τi we obtain

≤ N−t(|α|+Cα̂) ∑
P∈P2t

∑
1≤ jB1

<...< jBL
≤N

{B1,...,BL}=P

∑
τ

N
∑i

(

1+1|[i]|=1
2

)

(

1 j[i]∈α̂−1
)

.

Estimating further by dropping the requirement for distinct j we obtain the result

� N−t(|α|+Cα̂) ∑
P∈P2t

L

∏
b=1

N

∑
j=1

N

( |Bb|+1|Bb |=1
2

)

(1 j∈α̂−1)
� N−t(|α|+Cα̂). (69)

The last step since the sums concerning P and τ only have � 1 many summands and the
innermost sum is bounded by |α̂|+ 1 as the exponent of N is at most −1 except for the
|α̂| many cases where it is zero. Plugging (65) and (69) into (64) yields the claim. �

Proof of Lemma 16. It suffices to consider choice (I) as the assertion is immediate for
choice (II).
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We recall that m
(k)
l = tanh(h+Y

(k−1)
l ). By the chain rule and (47), we have

dxlm
(k)
l =

(

1−m
(k)
l

2
)

dxlY
(k−1)
l

=

(

1−m
(k)
l

2
)

[

β√
N

∑
p6=l

δ{l,p}{x,l}m
(k−1)
p +∆

(k−1)
l;x,l

]

=

(

1−m
(k)
l

2
)[

β√
N

m
(k−1)
x +∆

(k−1)
l;x,l

]

.

(70)

Hence,

E
(k)
x =

β√
N

∑
l

dxlm
(k)
l −β 2

(

1−q
(k)
N

)

m
(k−1)
x =

β√
N

∑
l

(

1−m
(k)
l

2
)

∆
(k−1)
l;x,l .

By the product rule, it follows that

∂αE
(k)
x =

β√
N

∑
l

∂α

(

1−m
(k)
l

)(

1+m
(k)
l

)

∆
(k−1)
l;x,l

=
β√
N

∑
l

∑
γ ,δ ,ε∈Np

0 :
γ+δ+ε=α

(

α

γ δ ε

)

(

1|γ |=0−∂γ m
(k)
l

)(

1|δ |=0 +∂δ m
(k)
l

)

∂ε∆
(k−1)
l;x,l .

Hence, by expansion and the Hölder inequality (51),

E

[

(

∂αE
(k)
x

)2t
]

� N−t
N

∑
l1,...,l2t=1

max
γb,δb,εb∈Np

0 :
γb+δb+εb=α

E

[

2t

∏
b=1

(

1|γb|=0 −∂γb
m
(k)
lb

)(

1|δb|=0 +∂δb
m
(k)
lb

)

∂εb
∆
(k−1)
lb;r,lb

]

≤ N−t
N

∑
l1,...,l2t=1

max
γb,δb,εb∈Np

0 :
γb+δb+εb=α

2t

∏
b=1

E

[

(

1|γb|=0 −∂γb
m
(k)
lb

)6t
]1/6t

E

[

(

1|δb|=0 +∂δb
m
(k)
lb

)6t
]1/6t

×E

[

(

∂εb
∆
(k−1)
lb;x,lb

)6t
]1/6t

(71)

As (a+b)6t � a6t +b6t and by Theorem 9,

E

[

(

∂εb
∆
(k−1)
lb;x,lb

)6t
]

� E

[

(

∂εb
∂δ{x,lb}

E
(k−1)

lb

)6t
]

+E

[

(

∂εb

(

∆
(k−1)
lb;x,lb

−∂δ{x,lb}
E
(k−1)
lb

))6t
]

(72)
and

E

[

(

1|γb|=0 −∂γb
m
(k)
lb

)6t
]

� 1|γb|=0 +E

[

(

∂γb
m
(k)
lb

)6t
]

� N−3t|γb|−3tCγb
(lb).

The second term on the rhs of (72) is � N
−3t

(

|εb|+Cεb+δ{x,lb}
+1lb 6∈εb

)

by Lemma 15. We
conclude by induction. The assertion holds for k = 1 as E (1) ≡ 0, since m(0) = 0 and
m(1) is independent of g. From now on, we assume that the assertion holds for k−1 for
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some k ≥ 2. Then, the first term on the rhs of (72) is � N
−3t

(

|εb+δ{x,lb}|+Cεb+δ{x,lb}

)

by the
induction hypothesis.

Plugging these bounds into (71), and using that

|γb|+ |δb|+ |εb|= |α|,

Cγb
(lb)≥ Cγb

−1lb∈γb
, Cγb

+Cδb
+Cεb+δ{x,lb}

≥ Cα+δ{x,lb}
≥ Cα +1x6∈α −1lb∈α ,

as well as |α| � 1, we obtain

E

[

(

∂αE
(k)
x

)2t
]

� N−t
N

∑
l1,...,l2t=1

max
γb,δb,εb∈Np

0 :
γb+δb+εb=α

2t

∏
b=1

N
− 1

2

(

|γb|+Cγb
(lb)+|δb|+Cδb

(lb)+|εb|+Cεb+δ{x,lb}
+1lb 6∈εb

)

≤ N−t(|α|+Cα+1x 6∈α)−2t
N

∑
l1,...,l2t=1

max
γb,δb,εb∈Np

0 :
γb+δb+εb=α

2t

∏
b=1

N
1
2

(

1lb∈γb
+1lb∈δb

+1lb∈εb
+1lb∈α

)

= N−t(|α|+Cα+1x 6∈α)−2t

(

N

∑
l=1

N1l∈α

)2t

≤ N−t(|α|+Cα+1x 6∈α)

as required. �

5. COVARIANCES OF LOCAL FIELDS

The aim of this section is to prove the propagation relation from Theorem 7. As first
step, we use Theorem 6 to show the propagation relation in expectation:

Lemma 17. For β ,h ∈ R, k,k′ ≥ 2, there exists C ≡Ck,k′,β ,h > 0 such that

∣

∣

∣
E

[

q
(k,k′)
N

]

−E

[

ψ
(

q
(k−1,k′−1)
N ,q

(k−1)
N ,q

(k′−1)
N

)]∣

∣

∣
≤ C√

N

and
∣

∣

∣

∣

∣

E

[

q
(k,1)
N

]

−E

[

χ
(

q
(k−1)
N

)] 1

N

N

∑
i=1

m
(1)
i

∣

∣

∣

∣

∣

≤ C√
N
.

Proof. By the definition (12) of q
(k,k′)
N and the TAP recursion (9),

E

[

q
(k,k′)
N

]

=
1

N

N

∑
i=1

E

[

m
(k)
i m

(k′)
i

]

=
1

N

N

∑
i=1

E

[

tanh
(

h+Y
(k−1)
i

)

tanh
(

h+Y
(k′−1)
i

)]

.

By Theorem 6,

=
1

N
E

[

ψ(q
(k−1,k′−1)
N ,q

(k−1)
N ,q

(k′−1)
N )

]

+O(N−1/2).
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Analogously,

E

[

q
(k,1)
N

]

=
1

N

N

∑
i=1

E

[

m
(k)
i

]

m
(1)
i =

1

N

N

∑
i=1

E

[

tanh
(

h+Y
(k−1)
i

)]

m
(1)
i

= E

[

χ
(

q
(k−1)
N

)] 1

N

N

∑
i=1

m
(1)
i +O(N−1/2).

�

Next we show, using Theorem 6 again, that q
(k,k′)
N concentrates around its expectation:

Lemma 18. For β ,h ∈ R, k,k′ ∈ N, there exists C ≡Ck,k′,β ,h > 0 such that

E

[

(

q
(k,k′)
N −E

[

q
(k,k′)
N

])2
]

≤ C√
N

for all N ∈ N.

Proof. We first consider the case that k,k′ ≥ 2. By the TAP recursion (9),

E

[

q
(k,k′)
N

]

=
N

∑
i=1

1

N
E

[

m
(k)
i m

(k′)
i

]

=
N

∑
i=1

1

N
E

[

tanh
(

h+Y
(k−1)
i

)

tanh
(

h+Y
(k′−1)
i

)]

.

With f (x,y) = tanh(h+ x) tanh(h+ y) and Z defined in Theorem 6, we obtain

=
N

∑
i=1

1

N
E

[

tanh
(

h+Z
(k−1)
i

)

tanh
(

h+Z
(k′−1)
i

)]

+O(1/
√

N).

For the second moment, we obtain

E

[

(

q
(k,k′)
N

)2
]

=
1

N2

N

∑
i, j=1

E

[

m
(k)
i m

(k′)
i m

(k)
j m

(k′)
j

]

=
1

N2

N

∑
i, j=1

E

[

tanh
(

h+Y
(k−1)
i

)

tanh
(

h+Y
(k′−1)
i

)

tanh
(

h+Y
(k−1)
j

)

tanh
(

h+Y
(k′−1)
j

)]

.

Again by Theorem 6 with f (x,y,z,w) = tanh(h+ x) tanh(h+ y) tanh(h+ z) tanh(h+w),

=
1

N2

N

∑
i, j=1

E

[

tanh
(

h+Z
(k−1)
i

)

tanh
(

h+Z
(k′−1)
i

)

× tanh
(

h+Z
(k−1)
j

)

tanh
(

h+Z
(k′−1)
j

)]

+O(1/
√

N).

By the independence structure of the covariance matrix Σ,

=
1

N2

N

∑
i, j=1

E

[

tanh
(

h+Z
(k−1,i)
i

)

tanh
(

h+Z
(k′−1)
i

)]

×E

[

tanh
(

h+Z
(k−1)
j

)

tanh
(

h+Z
(k′−1)
j

)]

+O(1/
√

N)

= E

[

1

N
m(k)T

m(k′)
]2

+O(1/
√

N) .
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Hence,

E

[

(

1

N
m(k)T

m(k′)−E

[

1

N
m(k)T

m(k′)
])2

]

= E

[

(

1

N
m(k)T

m(k′)
)2
]

−E

[

1

N
m(k)T

m(k′)
]2

= O(1/
√

N).

Next we consider the case that k ≥ 2, k′ = 1. Using that the initial value m(1) is inde-
pendent of g, we obtain

E

[

m
(k)
i m

(1)
i

]

= E

[

m
(k)
i

]

m
(1)
i = E

[

tanh
(

h+Z
(k−1)
i

)]

m
(1)
i +O(1/

√
N)

and

E

[

m
(k)
i m

(1)
i m

(k)
j m

(1)
j

]

= E

[

m
(k)
i m

(k)
j

]

m
(1)
i m

(1)
j

= E

[

tanh
(

h+Z
(k−1)
i

)

tanh
(

h+Z
(k−1)
j

)]

m
(1)
i m

(1)
j +O(1/

√
N)

and the above computation for k,k′ ≥ 2 passes through in this case just the same.
The case k = k′ = 1 is trivial as m(1) is assumed independent of g. �

We also show concentration of ψ(q
(k,k′)
N ,q

(k)
N ,q

(k′)
N ) and of χ(q

(k)
N ) around the expecta-

tion. To this end, we establish the following Lemma:

Lemma 19. For (X ,Y) centred multivariate normal distributed and f ,g ∈ C 2, bounded

and with two bounded derivatives we have

d

d Cov(X ,Y)
E( f (X)g(Y )) = E

(

f ′ (X)g′ (Y )
)

d

d Var(X)
E( f (X)g(Y )) =

1

2
E
(

f ′′ (X)g(Y )
)

d

d Var(Y )
E( f (X)g(Y )) =

1

2
E
(

f (X)g′′ (Y )
)

.

Remark 20. Since we are interested in tanh and its derivatives for f and g the bounded-

ness assumptions will always be satisfied for the purposes of this paper. They allow us to

not worry about existance of expectations, but can be weakened significantly.

Proof. We consider the covariance matrix

T =

(

t2 t1
t1 t3

)

,

with t2, t3 > 0 and |t1| <
√

t2t3, i.e. we restrict ourselfs to the interior of the set of co-
variance matrices. The general case follows by continuity. For a pair Z = (Z1,Z2) of
independent standard Gaussians, we construct (X ,Y ) := ZT T 1/2. Let σ1, σ2 denote the
column vectors of T 1/2. We note that restriction to the interior of the set of covariance
matrices garantees existance of derivatives of T 1/2 with respect to t1, t2, t3, which will be
needed in a moment. For now we obtain that

E( f (X)g(Y )) = E
[

f
(

σ T
1 Z
)

g
(

σ T
2 Z
)]

.
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Using Gaussian integration by parts and the shorthand ∂ti =
d

dti
one quickly checks the

following preparatory calculations

E
(

Z1(∂tiσ1,1) f ′ (X)g(Y )
)

=E
(

(∂tiσ1,1)σ1,1 f ′′ (X)g(Y )
)

+E
(

(∂tiσ1,1)σ2,1 f ′ (X)g′ (Y )
)

,

E
(

Z2(∂tiσ1,2) f ′ (X)g(Y )
)

=E
(

(∂tiσ1,2)σ1,2 f ′′ (X)g(Y )
)

+E
(

(∂tiσ1,2)σ2,2 f ′ (X)g′ (Y )
)

,

E
(

Z1(∂tiσ2,1) f (X)g′ (Y )
)

=E
(

(∂tiσ2,1)σ1,1 f ′ (X)g′ (Y )
)

+E
(

(∂tiσ2,1)σ2,1 f (X)g′′ (Y )
)

,

E
(

Z2(∂tiσ2,2) f (X)g′ (Y )
)

=E
(

(∂tiσ2,2)σ1,2 f ′ (X)g′ (Y )
)

+E
(

(∂tiσ2,2)σ2,2 f (X)g′′ (Y )
)

.

We now compute directly

∂tiE( f (X)g(Y )) =∂tiEZ

[

f
(

σ T
1 Z
)

g
(

σ T
2 Z
)]

=E
(

Z1(∂tiσ1,1) f ′ (X)g(Y )
)

+E
(

Z2(∂tiσ1,2) f ′ (X)g(Y )
)

+

+E
(

Z1(∂tiσ2,1) f (X)g′ (Y )
)

+E
(

Z2(∂tiσ2,2) f (X)g′ (Y )
)

and by our preparation

=
1

2
E
((

∂ti

(

σ 2
1,1 +σ 2

1,2

))

f ′′ (X)g(Y )
)

+
1

2
E
((

∂ti

(

σ 2
2,2 +σ 2

2,1

))

f (X)g′′ (Y )
)

+

+E
(

(∂ti(σ1,1σ2,1 +σ1,2σ2,2)) f ′ (X)g′ (Y )
)

,

which simply is

=
1

2
E
(

(∂tit2) f ′′ (X)g(Y )
)

+
1

2
E
(

(∂tit3) f (X)g′′ (Y )
)

+E
(

(∂tit1) f ′ (X)g′ (Y )
)

,

since T 1/2 is symmetric. The claim follows by choosing i = 1,2,3. �

Corollary 21. The functions ψ : [−1,1]× [0,1]2 → [−1,1] and χ : [0,1]→ [−1,1] (and

their partial derivatives) are Lipschitz.

Proof. It is a direct consequence of Lemma 19 since all derivatives of tanh are bounded.
�

Corollary 22. For β ,h ∈ R, k,k′ ∈ N, there exists C ≡Ck,k′,β ,h > 0 such that

E

[

(

ψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)

−E

[

ψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)])2
]

≤ C√
N

and

E

[

(

χ
(

q
(k)
N

)

−E

[

χ
(

q
(k)
N

)])2
]

≤ C√
N
.

Proof. We decompose

E

[

(

ψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)

−E

[

ψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)])2
]

≤ 2E

[

(

ψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)

−ψ
(

E

[

q
(k,k′)
N

]

,E
[

q
(k)
N

]

,E
[

q
(k′)
N

]))2
]

+

+2E

[

(

E

[

ψ
(

q
(k,k′)
N ,q

(k)
N ,q

(k′)
N

)]

−ψ
(

E

[

q
(k,k′)
N

]

,E
[

q
(k)
N

]

,E
[

q
(k′)
N

]))2
]

using that (a+b)2 ≤ 2a2+2b2. Here the first term on the rhs is O(N−1/2) by Lemmata 18
and 21. The second expectation is bounded by the first one by linearity of the expectation
and by Jensen’s inequality. This implies the first assertion. The second assertion follows
analogously. �
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Since all preparations are in place we proceed to the

Proof of Theorem 7. For (26), we use that

E

[

(

q
(k,k′)
N −ψ

(

q
(k−1,k′−1)
N ,q

(k−1)
N ,q

(k′−1)
N

))2
]

≤ 9E

[

(

ψ(q
(k,k′)
N ,q

(k)
N ,q

(k′)
N )−E

[

ψ(q
(k,k′)
N ,q

(k)
N ,q

(k′)
N )
])2
]

+9E

[

(

q
(k,k′)
N −E

[

q
(k,k′)
N

])2
]

+

+9
(

E

[

q
(k,k′)
N

]

−E

[

ψ
(

q
(k−1,k′−1)
N ,q

(k−1)
N ,q

(k′−1)
N

)])2

where all terms on the r.h.s. are bounded by a constant times N−1/2 by Lemmata 17, 18
and Corollary 22. Assertion (27) follows analogously. �

6. FIXED POINT ANALYSIS

We recall that q denotes the largest fixed point of φ , cfr. (5), defined by:

φ : R+
0 → [0,1], x 7→ E tanh2

(

h+β
√

xZ
)

.

Theorem 23. For h 6= 0 or h = 0, |β | ≤ 1

sup
x∈R+

0

∣

∣

∣
φ (k)(x)−q

∣

∣

∣
→ 0, as k → ∞.

For h = 0, |β |> 1 and δ > 0

sup
x≥δ

∣

∣

∣φ (k)(x)−q

∣

∣

∣→ 0, as k → ∞.

The proof of Theorem 23 proceeds in two main steps. We first show that in a bounded
number of steps φ (k) visits [q/2,2q]. We then establish that φ (k) contracts strongly on this
interval. The case h = 0, |β | ≤ 1 needs a slightly different treatment, but turns out to be
much simpler.

The way to [q/2,2q]

In this part, we show the following Lemma:

Lemma 24. For h 6= 0: q > 0 is the unique fixed point of φ and we have

sup
x∈R+

0

inf{k ∈ N : φ
(k)
β

(x) ∈ [q/2,2q]}< ∞.

For h = 0, |β |> 1: The fixed points of φ are 0 and q > 0; and for any δ > 0

sup
x≥δ

inf{k ∈ N : φ
(k)
β

(x) ∈ [q/2,2q]}< ∞.

For h = 0, |β | ≤ 1: q = 0 is the unique fixed point of φ and we have

sup
x∈R+

0

∣

∣

∣
φ (k)(x)−q

∣

∣

∣
→ 0, as k → ∞.

The first step to establish Lemma 24 is to prove the following monotonicity property.
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Lemma 25. For h 6= 0 the fixed point q is unique and strictly positive; and we have

φ(x)> x if x ∈ [0,q) and φ(x)< x if x > q

For h = 0, |β |> 1 the fixed points of φ are 0 and q > 0; for h = 0, |β | ≤ 1 the only fixed

point is q = 0 and in either case we have

φ(x)> x if x ∈ (0,q) and φ(x)< x if x > q

Proof. We refer to the function φ for β = 1 by φ1. By Proposition A.14.1. of [20] for
ϕ = tanh we have that φ1(x)/x is a strictly decreasing function on R

+. Setting x = β 2y for
β 6= 0 we obtain the same monotonicity for φ(y)/y. For h 6= 0 we have φ(0) > 0, hence
φ(x)/x = 1 has a unique solution q > 0 and φ(x)/x < φ(q)/q = 1 if and only if x > q.
For h = 0 we have φ(0) = 0. If limx→0+ φ(x)/x ≤ 1, then φ(x)/x < 1 for x > 0 and q = 0
is the only fixed point. Otherwise limx→0+ φ(x)/x > 1, then q > 0 and the claim follows
for x > 0 the same way it did in the h 6= 0 case. Finally we verify the transition for h = 0
at β = 1: By L’Hospital rule limx→0+ φ(x)/x = limx→0+ φ ′(x) = β 2, since

φ ′(x) = βEZ

[

Z

2
√

x
(tanh2)′(β

√
xZ)

]

=
β 2

2
EZ

[

(tanh2)′′(β
√

xZ)
]

and (tanh2)′′(0) = 2(1−4tanh2(0)+3tanh4(0)) = 2. �

We proceed to work out the consequences of such monotonicity.

Lemma 26. Let I ⊂ R be a compact interval and f : I → R a continuous function with

either f (x)> x for all x ∈ I or f (x)< x for all x ∈ I, then

sup
x∈I

inf{k ∈ N : f (k)(x) 6∈ I}< ∞.

Proof. By continuity of f , and compactness of I we have that x 7→ f (x)− x attains its
minimum on I. Using that f (x) > x said minimum is strictly positive. Therefore it takes
at most diam(I)(miny∈I ( f (y)− y))−1 < ∞ many steps for f (k)(x) to leave I. The case
f (x)< x follows by considering −I and −x. �

We finish preparations for the proof of Lemma 24 by establishing the following paculiar
property of φ .

Lemma 27.

φ([q,∞))⊂ [q/2,1]

Proof. Clearly since | tanh | ≤ 1 we have φ(x) ≤ 1 by construction. Due to symmetries
we can assume h,β ≥ 0 without loss of generality. Using symmetry and monotonicity of
tanh2 and the Gaussian density around 0

E[tanh2(h+β
√

qZ)1Z>0]≥ E[tanh2(h+β
√

qZ)1Z<0].

Hence for x ≥ q

q

2
=

1

2
φ(q)≤ E[tanh2(h+β

√
qZ)1Z>0]≤ E[tanh2(h+β

√
xZ)1Z>0]≤ φ(x).

�

Proof of Lemma 24. We first tackle the cases where q > 0. Without loss of generality we
assume x ∈ [0,1], since otherwise we may consider φ (k)(x) as φ (k−1)(φ(x)), i.e. shifting
the iteration index by one and starting in φ(x) ≤ 1 instead of x. By Lemmata 25 and 26
the number of steps needed for φ (k) to leave [0,q/2] for h 6= 0 or [δ ,q/2], for h = 0, |β |>
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1, 0 < δ < q/2 is uniformly bounded. After these steps we are either on [q/2,2q], in
which case there is nothing to prove, or we are on (2q,1]. By Lemmata 25 and 26 the
iteration leaves [2q,1] in a uniformly bounded number of steps. Finally applying Lemma
27 yields the claim, since the last point in [2q,1] before leaving the interval is mapped
to [q/2,2q). Finally for h = 0,β ≤ 1 we have q = 0, hence by Lemma 25 the sequence
φ (k)(x) is monotonically decreasing regardless of the starting value. Applying Lemma 26
we obtain that for any δ > 0 the sequence φ (k)(x) exits [δ ,1] in a bounded number of
steps, uniformly over all starting points x ∈ [0,1]. The claim follows. �

Strong contractivity on [q/2,2q]

To finish the proof of Theorem 23 we use the reduction to [q/2,2q] established in
the previous Section and then argue on this interval similarly to the Banach fixed point
theorem. To this end we first establish a bound on the derivative of φ in Lemma 28, which
together with Lemma 25 will give strong estimates for φ in Lemma 29:

Lemma 28. For x > 0

φ ′(x)>−φ(x)

2x

Lemma 29. For any h,β we have

q− 1

2
(x−q)< φ(x)< x ∀x ∈ (q,2q] (73)

x < φ(x)< q+
1

3 x
q
−1

(q− x) ∀x ∈ [q/2,q) (74)

Proof of Lemma 28. We first tackle the case β = 1 and generalize thereafter. Computing
the derivative we have for x ≥ 0

xφ ′
1(x) =

∫

tanh2(z)x

(

− 1

2x
+

(z−h)2

2x2

)

1√
2πx

exp

(

−(z−h)2

2x

)

dz

= E

[

tanh2(h+
√

xZ)
Z2 −1

2

]

>−1

2
φ1(x).

The last step using that E[Z2 tanh2(h+
√

xZ)]> 0. The claim now follows for general β ,
since

φ ′(x) = β 2φ ′
1(β

2x)>−φ1(β
2x)

2x
=−φ(x)

2x
.

�

Proof of Lemma 29. First note that there is no claim if q = 0, hence we can assume q > 0.
The estimates comparing φ(x) to x follow immediately from Lemma 25. We now prove
the remaining two estimates. Clearly for x ∈ [q/2,2q]

φ(x)−q = φ(x)−φ(q) =

∫ x

q
φ ′(z)dz. (75)

Using Lemma 28 and that φ(z)/z is decreasing (see proof of Lemma 25) we have for
x > q and z ∈ [q,x]

φ ′(z)>−φ(z)

2z
>−φ(q)

2q
=−1

2
.
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estimating (75) with the above yields (73). By the same argument we obtain for x ∈
[q/2,q] and z ∈ [x,q] that

φ ′(z)>−φ(z)

2z
>−φ(x)

2x
.

Estimating (75) this way yields

φ(x)< q+
q− x

2x
φ(x),

which can be rearranged to obtain (74)

φ(x)< q(1− q− x

2x
)−1 = q+

1

3 x
q
−1

(q− x).

�

Proof of Theorem 23. By Lemma 24 we may assume q > 0 (as the claim for q = 0 is cov-
ered by Lemma 24) and that we start in [q/2,2q], since otherwise there exists a uniformly
bounded number of steps, such that we arrive in this interval. We now iterate one more
step and consider

a := minφ([q/2,2q]), b := maxφ([q/2,2q]).

Note that φ is a continuous function and therefore attains maximum and minimum on a
compact. By Lemma 29 we verify q/2 < a ≤ b < 2q, which is seen by estimating all
x by worst case in the given range. With this we established that φ (k)(x) enters [a,b]
in a uniformly bounded number of steps and never leaves thereafter. We now consider
a slightly larger interval of the shape [q− γ,q+ 2γ] to start and choose γ = max{q−
a, b−q

2 } < q/2, such that [a,b] ⊂ [q− γ,q+ 2γ] ⊂ (q/2,2q). For x ∈ [q− γ,q) we have
3 x

q
−1 ≥ 3a

q
−1 > 1

2 , where we note that q− γ > q/2. Hence by Lemma 29 we have

x < φ(x)< q+2(1− ε)(q− x) ∀x ∈ [q− γ,q), (76)

where ε := 1−(6q−γ
q

−2)−1 > 0. For d ∈ (0,γ], we have q−γ ≤ q−d < q+2d ≤ q+2γ .
Hence, by (76) and the first inequality of Lemma 29 we have

φ([q−d,q])⊂ (q−d,q+2(1− ε)d) , (77)

φ([q,q+2d])⊂ (q−d,q+2d) . (78)

We now show that a uniformly bounded amount of steps suffices for φ (k)(x) to reach any
fixed neighborhood of q. This implies the claim by considering a sequence of smaller and
smaller neighborhoods of form [q− d,q+ 2d], since the iteration stays in such intervals
indefinitely due to (77) and (78). We now fix an arbitrary d ∈ (0,γ]. The iteration leaves
[q− d,q− (1− ε)d] in a uniformly bounded number of steps by Lemmata 26 and 25.
Hence the iteration exits [q− d,q− (1− ε)d] to a point on [q− (1− ε)d,q+ 2(1− ε)d]
and then never escapes this interval: to see this, we use (77) and (78) with (1−ε)d in place
of d. Finally the iteration also leaves [q+2(1−ε)d,q+2d] in uniformly boundedly many
steps to either [q− (1− ε)d,q+2(1− ε)d], in which it stays, or to [q−d,q− (1− ε)d],
from which it enters [q−(1−ε)d,q+2(1−ε)d] in a uniformly bounded amount of steps.
Hence for any d there exists a finite Kd = Kd,β ,h ∈ N, such that

φ (Kd)([q−d,q+2d])⊂ [q− (1− ε)d,q+2(1− ε)d].
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Repeating this process we see that for any fixed l ∈ N the iteration reaches [q− (1−
ε)lγ,q+2(1− ε)lγ] in a number of steps bounded uniformly over all choices of starting
point x ∈ R

+
0 for h 6= 0 and x > δ for h = 0. The claim follows. �

7. PROOF OF THEOREM 3

Proof of Theorem 3: The case k = k′. Let ε > 0, we have

P

(∣

∣

∣
q
(k)
N −q

∣

∣

∣
> ε
)

≤ P

(∣

∣

∣
q
(k)
N −φ (k−1)

(

q
(1)
N

)∣

∣

∣
>

ε

2

)

+P

(∣

∣

∣
φ (k−1)

(

q
(1)
N

)

−q

∣

∣

∣
>

ε

2

)

.

(79)

To show assertion (16) for k = k′, it suffices to prove that the limk→∞ limsupN→∞ of the
terms on the r.h.s. of (79) tends to 0. By the Markov inequality, the first term on the r.h.s.
is up to the factor 4/ε2 at most

E

[

(

q
(k)
N −φ (k−1)

(

q
(1)
N

))2
]

= E





(

k−2

∑
i=0

φ (i)
(

q
(k−i)
N

)

−φ (i+1)
(

q
(k−i−1)
N

)

)2




≤ k
k−2

∑
i=0

β 4i
E

[

(

φ (i)
(

q
(k−i)
N

)

−φ (i+1)
(

q
(k−i−1)
N

))2
]

≤ k
k−2

∑
i=0

E

[

(

q
(k−i)
N −φ (1)

(

q
(k−i−1)
N

))2
]

= O

(

1√
N

)

(80)

the second line by
(

∑k
i=1 ai

)2 ≤ k ∑k
i=1 a2

i , the third line using the fact that φ(t) is β 2-
Lipschitz multiple times. For the last estimate in (80), we used Theorem 7 recognizing

φ
(

q
(k−i−1)
N

)

≡ ψ
(

q
(k−i−1)
N ,q

(k−i−1)
N ,q

(k−i−1)
N

)

.

If h 6= 0 or h = 0 and β < 1, we bound

lim
k→∞

limsup
N→∞

P

(∣

∣

∣φ (k−1)
(

q
(1)
N

)

−q

∣

∣

∣>
ε

2

)

≤ lim
k→∞

P

(

sup
x∈R+

0

∣

∣

∣φ (k)(x)−q

∣

∣

∣>
ε

2

)

= 0

for the second term on the r.h.s. of (79), where the last equality follows from Theorem 23.

If h = 0 and β ≥ 1 and liminfN→∞ q
(1)
N > δ for some δ > 0 and bound the second term

on the r.h.s. of (79) by

lim
k→∞

limsup
N→∞

P

(∣

∣

∣
φ (k−1)

(

q
(1)
N

)

−q

∣

∣

∣
>

ε

2

)

≤ lim
k→∞

P

(

sup
x≥δ/2

∣

∣

∣
φ (k−1) (x)−q

∣

∣

∣
>

ε

2

)

= 0,

(81)
by Theorem 23.

If h = 0 and β ≥ 1, with limN→∞ q
(1)
N = 0, we replace q with 0 in the beginning of the

proof. Then we bound the second term on the r.h.s. of (79) by

P

(

φ (k−1)
(

q
(1)
N

)

>
ε

2

)

=P

(∣

∣

∣
φ (k−1)

(

q
(1)
N

)

−φ (k−1) (0)
∣

∣

∣
>

ε

2

)

≤P

(

β 2(k−1)
∣

∣

∣
q
(1)
N −0

∣

∣

∣
>

ε

2

)

(82)

using the that φ is β 2-Lipschitz and that 0 is a fixed point. The r.h.s. is tending to 0 as
N → ∞ by assumption. �
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To consider the limiting covariances we introduce the convenient notation

ϕ : [−q,q] 7→ [−q,q], t → ψ(t,q,q).

.

Lemma 30. Let h = 0. Then the AT condition (4) is equivalent to |β | ≤ 1.

Proof. Clearly, (4) is satisfied if β ≤ 1 as h = 0. We now assume that h = 0 and β > 1.

Then q > 0, ϕ(0) = E
[

tanh
(

β
√

qZ′)]2 = 0, and ϕ(q) = φ(q) = q. By the proof of
Lemma 2.2 a) of [5], ϕ ′(t) > 0,ϕ ′′(t) ≥ 0 for t ≥ 0. As q > 0 is a fixed point of ϕ , it
follows that there exists x ∈ (0,q) with ϕ(x) < x. Hence, ϕ(q)−ϕ(x)> q− x and

1

q− x

∫ q

x
ϕ ′(t)dt > 1.

This in turn implies that ϕ ′(t)> 1 for some t ∈ (x,q). It follows that ϕ ′(q) > 1 as ϕ ′ is
increasing by Lemma 2.2 a) of [5]. By Lemma 2.2 b) of [5], ϕ ′(q) = β 2

Ecosh−4(h+
β
√

qZ), hence the AT condition (4) cannot be satisfied. �

Before we show the remaining part of Theorem 3 some final preparation is needed. We
show negative covariances increase when propagated, i.e.

Lemma 31. For β ,h ∈ R and t < 0 we have

ϕ(t)≥ χ(q)2 + t,

where χ(q)2 = 0 if and only if h=0.

Thus ϕ has no fixed points on [−1,0] for h 6= 0.

Proof. Fix β ∈ R,h 6= 0 ∈ R. There exists only one q = qβ ,h that solves (5). In this
proof, q will be considered as a constant and not a function of h anymore. We recall that
ϕ(t) = ψ(max(−q,min(t,q)),q,q). We will compare this function with

Ψ(t) = E
[

tanh(βZ) tanh(βZ′)
]

(83)

where the expectation is over centered Gaussians Z′,Z′′ such that

Var(Z) = q, Var(Z′) = q, Cov(Z,Z′) = min{max{t,−q},q}. (84)

Note that for −q ≤ t ≤ q, we can write Ψ as

Ψ(t) = E

[

tanh
(

β
(

sign(t)
√

|t|Z+
√

q−|t|Z′
))

tanh
(

β
(

√

|t|Z +
√

q−|t|Z′′
))]

(85)
where the expectation is over independent centered Gaussians Z,Z′,Z′′. Note that Ψ is an
odd function. We claim for the moment that for t ∈ [−q,0] and h 6= 0, it holds

ϕ ′(t)≤ Ψ′(t). (86)

It follows that

ϕ(t) = ϕ(0)−
∫ 0

t
ϕ ′(x)dx ≥ ϕ(0)−

∫ 0

t
Ψ′(x)dx

= ϕ(0)−Ψ(0)+Ψ(t) = χ(q)2+Ψ(t),

since ϕ(0) = χ(q)2 > 0 and Ψ(0) = 0. We will now prove that Ψ(t)≥ t for t ∈ [−q,0].
For t ∈ [0,q], we easily check that Ψ′ ≥ 0 and Ψ′′ ≥ 0 (see [5], Lemma 2.2). Thus Ψ is
convex, increasing on [0,q] and we claim that

Ψ(q) = E
[

tanh2 (β
√

qZ)
]

≤ E
[

tanh2 (h+β
√

qZ)
]

= q, (87)
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(We will see that the proof of this claim is almost the same as the proof of the first claim).
In addition, Ψ(0) = 0, thus Ψ(t) ≤ t on [0,q]. As Ψ is odd, we have that Ψ(t) ≥ t on
[−q,0]. It remains to show (86) and (87). To this end we note that for X ,Y independent
centered Gaussians with

Var(X) = β 2 q+ t

2
and Var(Y ) = β 2 q− t

2

we have the representation

ϕ(t) = E[tanh(h+X +Y ) tanh(h+X −Y )]

and by computing the derivative and applying Gaussian integration by parts

ϕ ′(t) = β 2
E[tanh′(h+X +Y ) tanh′(h+X −Y )].

We now argue that ϕ ′(t) is as a function of h maximized in h= 0. This is hardly surprising
when noticing that tanh′ = 1− tanh2 is maximized in 0, as matching the maximum of
tanh′ with the maximum of the Gaussian density produces the largest value. To make this
intuition precise we define

g(z) := E[tanh′(z+Y ) tanh′(z−Y )],

so that ϕ ′(t) = β 2
E[g(h+X)]. Since tanh′ is an even function and Y has the same dis-

tribution as −Y one quickly checks that g is an even function as well. Additionally we
verify that g is decreasing on R

+ and increasing otherwise by the following estimate for
0 < z′ < z or 0 > z′ > z using the concavity of lntanh′:

g(z) = E
[

exp
(

ln tanh′(Y − z)+ ln tanh′(Y + z)
)]

≤ E
[

exp
(

ln tanh′(Y − z′)+ ln tanh′(Y + z′)
)]

= g(z′).

Writing fX for the Gaussian density of X we have

ϕ ′(t) =
∫ +∞

−∞
g(h+ x) fX(x)dx.

g is even, thus g′ is an odd function and we have that

d

dh

∫ +∞

−∞
g(h+ x) fX(x)dx

=
∫

g′(h+ x) fX(x)dx = e
−h2

2Var(X)

∫ +∞

−∞
g′(x) fX(x)e

hx
Var(X)dx

= e
−h2

2Var(X)

(

−
∫ 0

+∞
g′(−x) fX (−x)e

− hx
Var(X)dx+

∫ +∞

0
g′(x) fX(x)e

hx
Var(X)dx

)

= 2e
−h2

2Var(X)

∫ +∞

0
g′(x) fX(x)sinh

(

hx

Var(X)

)

dx.

(88)

using a linear change of variable twice. We proved that g′ is negative on R
+ and we have

that sign
(

sinh
(

hx
Var(X)

))

= sign(h) for x > 0: It follows that

h 7→
∫ +∞

−∞
g(h+ x) fX(x)dx
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is increasing on R
−, decreasing on R

+ and thus maximal in h = 0. We thus proved (86)
and (87) follows by using the same steps as in (88).
We recall that χ(q) = E

(

tanh
(

h+β
√

qZ
))

=: f (h). Note that f (0) = 0 and

f ′(h) = E
(

1− tanh2 (h+β
√

qZ)
)

> 0,

which allows us to conclude χ(q)2 = f (h)2 > 0 for all h 6= 0. �

We proceed to prove Theorem 3 (k 6= k′) in cases. If the AT condition (4) is satisfied
q̃ = q and ϕ(q) = q is the unique fixed point of ϕ . We thereafter give a proof in the case
the AT condition (4) is not satisfied. In this case q̃< q is a second fixed point of ϕ besides
q, which is the fundamental reason a more involved argument is required.

Proof of Theorem 3: The case k 6= k′ if the AT condition (4) is satisfied. Under the AT con-

dition (4), Lemma 30 and Theorem 3 for k = k′ give q
(k)
N → q as N →∞ followed by k →∞

in probability. We claim that

lim
k→∞

sup
t∈[−q,q]

∣

∣

∣
ϕ(k)(t)−q

∣

∣

∣
= 0 (89)

under the AT condition (4). We first finish the proof assuming claim (89) and thereafter
return to prove it. Note that

|q(k,k
′)

N | ≤
√

q
(k)
N q

(k′)
N

by definition of these quantities and by the Cauchy-Schwarz inequality. It follows for
each δ > 0 that

lim
k,k′→∞

limsup
N→∞

P

(

|q(k,k
′)

N | ≥ q+δ
)

= 0.

Hence,

q
(k,k′)
N −ψ(q

(k−1,k′−1)
N ∧q,q

(k−1)
N ,q

(k′−1)
N )→ 0

in probability as N → ∞ followed by k,k′ → ∞ by Theorem 7. As ψ is Lipschitz (by

Lemma 21) and as q
(k)
N → q in probability,

ψ(q
(k−1,k′−1)
N ∧q,q

(k−1)
N ,q

(k′−1)
N )−ψ(q

(k−1,k′−1)
N ∧q,q,q)→ 0

as N →∞ followed by k,k′→∞. The second term in the last display equals ϕ(q
(k−1,k′−1)
N ∧

q). Hence,

q
(k,k′)
N −ϕ(q

(k−1,k′−1)
N ∧q)→ 0

as N → ∞ followed by k,k′ → ∞. Iterating these steps and using that ϕ is Lipschitz, we
obtain

q
(k,k′)
N −ϕ(ℓ)

(

q
(k−ℓ,k′−ℓ)
N ∧q

)

→ 0 (90)

as N → ∞ followed by k,k′ → ∞, for any fixed l ∈N. The assertion follows from (90) and
(89), by considering large ℓ.

It remains to show the claim (89). This follows as in Lemma 2.4 b) of [5]. For h = 0,
the AT condition (4) and Lemma 30 imply that β ≤ 1, and hence that q = 0 is the unique
fixed point of (5) and ϕ ≡ 0. We assume h 6= 0 from here on, which implies q > 0. Let
ε ∈ (0,q). From (5), we note that ϕ(q) = q. By the proof of Lemma 2.2 a) of [5], ϕ ′ > 0
and ϕ ′′ > 0 on [0,q]. Under the AT condition (4), we have 0 ≤ ϕ ′(q− ε) < ϕ ′(q) ≤ 1
by Lemma 2.2b of [5]. Consequently for t ∈ [0,q− ε] there exists δ = δε > 0, such that
ϕ ′(t)≤ 1−δ and therefore

q≥ϕ(t)≥ϕ(q−ε)−(q−ε−t)ϕ ′(q−ε)≥ (q−ε)−(q− ε − t)(1−δ )= t+δ (q−ε−t).
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Hence we obtain uniform convergence of ϕ(k) to q on [0,q], since for any fixed ε > 0 a
finite number (⌈δ−1ε−1⌉) of steps sufices to ensure that ϕ(k) is within 2ε range of q. For
t ∈ [−q,0], Lemma 31 ensures that ϕ(k)(t)> 0 after a finite number of steps k and we can
conclude the proof if the AT condition (4) is satisfied. �

Proof of Theorem 3: The case k 6= k′ if the AT condition (4) is not satisfied. For h= 0,we

have q̃ = 0 and all q
(k,1)
N , k > 1 converge to zero by Theorem 7 (27) due to χ ≡ 0. This

implies convergence to zero of all q(k,k
′) for k 6= k′ by Theorem 7 (26), since ψ(0,x,y) = 0

for h = 0. Next for arbitrary h ∈ R and β = 0 we have ψ ≡ tanh(h)2, q̃ = q = tanh2(h)

and m
(k)
i = tanh(h) for any k > 1, which yields the claim. From here on let h 6= 0 and

β 6= 0. We define for q(1) ∈ [0,1], m̄ ∈ [−
√

q(1),
√

q(1)], for k ≥ k′ ≥ 1

q(k+1,k′+1) := ψ(q(k,k
′),q(k,k),q(k

′,k′)), q(k+1,1) := χ(q(k,k))m̄.

We again shorten q(k,k) to q(k). For the choice q(1) = q
(1)
N and m̄ = N−1 ∑i m

(1)
i by Theo-

rem 7, q(k,k
′)−q

(k,k′)
N converges to zero in probability in the large N limit. Note that q(k,k

′)

depends on N only through the N dependent choice of starting condition. It is necessary
to make sure that the iteration never fixes to the unstable fixed point ψ(q,q,q) = q. To
this end we prove

Lemma 32. For β ,h 6= 0 uniformly over all q(1), m̄ for each K > 1 there exists δK > 0,

such that

q(k,k
′)

√

q(k)q(k
′)
< 1−δK for all k > k′,k′ ∈ {2, . . . ,K},q(1) ∈ [0,1] and m̄ ∈ [−

√

q(1),

√

q(1)].

(91)

Proof. To obtain the required uniformity over k we consider the following iteration started
in a(1) ∈ [0,1],b(0) ∈ [minφ ,1], |m̄| ≤

√
a(1): For ℓ≥ 1 let

a(ℓ+1) := φ(a(ℓ)), b(ℓ) := φ(b(ℓ−1))

c(ℓ+1) := ψ(c(ℓ),a(ℓ),b(ℓ)), c(1) := χ(b(0))m̄.

With this we have for k + 1 > k′ > 1, that q(k,k
′) = c(k

′) when choosing a(1) = q(1) and
b(0) = q(k−k′). Note that k+1 > k′ is required to ensure that k− k′ ≥ 2, which is needed
to have b(0) ≥ minφ . The case k+ 1 = k′ will be resolved later. We now view a,b,c as
sequences of continuous functions of the starting values a(1),b(0), m̄. Hence it suffices to
show for l > 1 and any starting values that

c(ℓ) <
√

a(ℓ)b(ℓ), (92)

as compactness of the space of starting values and continuity then implies the claim. Note
that c(ℓ) ≤

√
a(ℓ)b(ℓ) is an immeadiate consequence of Cauchy-Schwarz inequality:

ψ(t,x,y)≤
√

ψ(x,x,x)ψ(y,y,y) =
√

φ(x)φ(y).

For equality to hold t = x= y is required on the set {(t,x,y) : x,y∈ [0,1], t ∈ [−√
xy,

√
xy]},

since φ(x)> 0 due to h 6= 0. Hence c(ℓ+1) =
√

a(ℓ+1)b(ℓ+1) can only happen if c(ℓ) = a(ℓ) =

b(ℓ). Propagating this downwards we see that c(ℓ) =
√

a(ℓ)b(ℓ) for some ℓ≥ 1 implies that
c(1) = a(1) = b(1). Now

|c(1)|= |χ(b(0))m̄| ≤
√

φ(b(0))a(1) =
√

b(1)a(1),
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where equality is only possible if b(0) = 0, as Jensen is only sharp for almost sure con-
stants. This is a contradiction to b(0) ≥minφ > 0 due to h 6= 0 and therefore concludes the
prove for k+1 > k ≥ 1. We now consider q(k+1,k) as a funtion of the starting values q(1)

and m̄. Following the same line of reasoning we have for k > 1 that q(k+1,k) =
√

q(k+1)q(k)

requires q(k,k−1) = q(k) = q(k−1). This however implies that q(k)= φ(q(k−1))= φ(q(k)) and
therefore q(k) = q(k−1) = q. Propagating this down again we obtain q(1) = q, which con-
tradicts that equality in |q(2,1)|= |χ(q(1))m̄| ≤

√

φ(q(1))q(1) only holds for q(1) = 0, again

due to Jensen beeing only sharp for almost sure constants. Hence q(k+1,k) <
√

q(k+1)q(k).

Again for k > 1 the claim follows due q(k+1,k)√
q(k+1)q(k)

being a continues function of the starting

values, that is defined on a compact, hence a maximum is achieved, which strictly below
one. �

From here on, we only consider the choice q(1) = q
(1)
N and m̄ = N−1 ∑i m

(1)
i only and no

longer condider the iteration as a function of starting values. Next we define for k > k′ ≥ 1

κ(k+1,k′+1) := fk,k′(κ
(k,k′)), and κ(k,1) :=







χ(q(k−1))m̄√
q(k)q(1)

, if q(1) > 0

0 , else
, where

fk,k′(x) :=
ψ(x

√

q(k)q(k
′),q(k),q(k

′))
√

φ(q(k))φ(q(k
′))

.

Note that if q(1) = 0 the value of κ(k,1) plays no role in the propagation, since it is mul-
tiplied by zero when computing κ(k+1,2) = ψ(0,0,q(k))/

√

φ(0)φ(q(k)). By Theorem 7
and remembering φ(t) ≡ ψ(t, t, t) by definition, see (17) and (14), we observe that the
correlation functional

κ
(k,k′)
N ≡ q

(k,k′)
N

√

q
(k)
N q

(k′)
N

satisfies for any k > k′ > 1

|κ(k,k′)
N −κ(k,k′)| → 0 as N → ∞

in probability. We remark that κ(k,k′) may depend on N, but only through the starting val-
ues q(1) and m̄. Note that ψ(t,x,y) is strictly increasing in t ∈ [−√

xy,
√

xy] for any x,y > 0
(see Lemma 19 with f = g= tanh) and therefore so is fk,k′ for any k,k′. Further both func-

tions are Lipschitz by corollary 21. Since q(k) → q by Theorem 3 we obtain, using that
the Lipschitz constant is uniformly bounded, uniform convergence of t 7→ ψ(t,q(k),q(k

′))
to t 7→ ψ(t,q,q) as well as uniform convergence of fk,k′ to t 7→ ψ(qt,q,q)/q. Using

that | tanh′′ | ≤ 2 it is simple to check that d
dt

ψ(t,x,y) as well as f ′k,k′ are 4β 4 Lips-

chitz (see corollary 21). This again gives uniform convergence of t 7→ d
dt

ψ(t,q(k),q(k
′))

to t 7→ d
dt

ψ(t,q,q) and of f ′k,k′ to t 7→ d
dt
(ψ(qt,q,q)/q). Corollary 21 gives uniform

convergence and bounds for higher derivatives of f ′k,k′ , since all derivatives of tanh are
bounded. By assumption the AT condtion (4) is not satisfied, which is equivalent to
d
dt

ψ(t,q,q)|t=q > 1, where the derivative is taken from below or equivalently on the set
A := {(t,x,y) : t ≤ √

xy,x,y ∈ [0,1]}. Since ψ ′ is continues on A there exists ε > 0 and
an in A open neighborhood Uε of (q,q,q) such that infψ ′(Uε)≥ 1+ ε . This implies that
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for sufficiently small ε > 0 and sufficiently small δ ≡ δε > 0 there exists K ∈ N, s.t.
f ′k,k′(t)> 1+ ε if k,k′ ≥ K and t > 1−δ . This impies for k,k′ ≥ K and t ∈ (1−δ ,1) that

fk,k′(t) = fk,k′(1)−
∫ 1

t
f ′k,k′(x)dx ≤ 1− (1− t)(1+ ε) = t − (1− t)ε. (93)

We now recall that q̃ is the smaller of the two fixed points of the on [0,1] convex and
increasing function t 7→ ψ(t,q,q) and that this function is strictly above the identity on
[−1, q̃) and below for (q̃,q) (see Lemma 31 and Lemma 2.2 a) of [5]). Hence by the
established uniform convergence, for any δ ′ > 0, there exist ε ′ > 0 and K′ ∈ N, s.t.
fk,k′(t) > t + ε ′ for t ∈ [−1, q̃/q− δ ′] and fk,k′(t) < t − ε ′ for t ∈ [q̃/q+ δ ′,1− δ ′] for
any k,k′ ≥ K′. We choose δ ′ = δ for simplicity. With this, we observe for sufficiently
large k, using additionally that fk,k′ is continuous, increasing and convex on q̃

q
+[−δ ,δ ]

due to uniform convergence, that fk,k′ has exactly one fixed point on q̃/q+ [−δ ,δ ] as

long as δ is chosen smaller than (1− q̃
q
)/2. We will refer to this fixed point by αk,k′ . By

(91) κK′+ℓ,K′ < 1− δK′ for any ℓ > 0. We now see that for large k,k′ that nε ′ = ⌈1/ε ′⌉
steps suffice to ensure that κk+nε ′ ,k

′+nε ′ > 0. Any positive value t ∈ [0, q̃/q−δ ] of κ in-
creases by at least ε ′ each step and eventually enters q̃/q+ [−δ ,δ ] as it can not jump
over αk,k′ ∈ q̃

q
+[−δ ,δ ], since fk,k′(t)≤ fk,k′(αk,k′) = αk,k′ . On the other hand any value

t ∈ [q̃/q+δ ,1−δ ] decreases and lands in [q̃/q−δ , q̃/q+δ ] as well due to the same rea-
sons. Finally values on [1−δ ,1−δK ] get repulsed from 1 due to fk,k′(t)≤ t − (1− t)ε ≤
t − δKε by (93) and land in q̃/q+[−δ ,δ ] as well. Hence for k > k′ both large enough
for any δ > 0 there exists a number of steps nδ uniformy bounded over all choices of
q(1), m̄ such that κk+nδ ,k

′+nδ
∈ q̃

q
+[−δ ,δ ]. Since q̃ > 0 is the smallest fixed point of the

on [0,q] convex function ψ(t,q,q) with ψ(0,q,q)> 0 we have d
dt

ψ(t,q,q)|t=q̃ < 1. Since
fk,k′ is increasing and above (below) the identity before (after) αk,k′ . This implies that
fk,k′(t) is always in between t and αk,k′ . Since αk,k′ ∈ q̃/q+[−δ ,δ ] we have established
that the iteration never leaves q̃/q+[−δ ,δ ] once entered. Considering a sequence of δ
approaching zero from above yields convergence of κk,k′ to q̃/q uniformly in the starting

values and therefore the claim due to the convergence of q(k) to q. �

REFERENCES

[1] A. Adhikari, C. Brennecke, P.v. Soosten and H.-T. Yau. Dynamical Approach to the TAP Equations for
the Sherrington-Kirkpatrick Model. J. Stat. Phys. 183 35. (2021)

[2] El Alaoui, Ahmed, Andrea Montanari, and Mark Sellke. Optimization of mean-field spin glasses. The

Annals of Probability 49 6 (2021): 2922-2960.
[3] Mohsen Bayati and Andrea Montanari, The dynamics of message passing on dense graphs, with appli-

cations to compressed sensing, IEEE Transactions on Information Theory 57 (2011), no. 2, 764-785.
[4] R. Berthier, A. Montanari, P. Nguyen. State evolution for approximate message passing with non-

separable functions, Information and Inference: A Journal of the IMA, Volume 9, Issue 1, Pages 33-79
(2020).

[5] E. Bolthausen (2014). An iterative construction of solutions of the TAP equations for the Sherrington-
Kirkpatrick model. Commun. Math. Phys. 325 333-366.

[6] E. Bolthausen (2019). A Morita type proof of the replica-symmetric formula for SK. In: Statistical

Mechanics of Classical and Disordered Systems. Springer.
[7] C. Brennecke and H.-T. Yau (2022). The replica symmetric formula for the SK model revisited. J. Math.

Phys. 63 , no. 073302 (2022)
[8] Chatterjee, S.: Spin glasses and Stein’s method. Probab. Theory Relat. Fields 148, 567-600 (2010)
[9] L.H.Y. Chen, L. Goldstein and Q.-M. Shao. Normal Approximation by Stein’s method. Springer (2011).



AMP ALGORITHMS AND STEIN’S METHOD 38

[10] Chen, W.-K., and Tang, Si. On Convergence of the Cavity and Bolthausen’s TAP Iterations to the
Local Magnetization. Commun. Math. Phys. 386 1209-1242 (2021).

[11] G. M. Constantine and T. H. Savits, A Multivariate Faa Di Bruno Formula With Applications. Trans-

actions of the American Mathematical Society, 348, No. 2 pp. 503-520 (1996).
[12] R. E. Gaunt, S. Li. Bounding Kolmogorov distances through Wasserstein and related integral proba-

bility metrics. J. Math. Anal. Appl. 522 (2023)
[13] S. Gufler,A. Schertzer, M. A. Schmidt, On the concavity of the TAP free energy in the SK model

Stochastic Processes and their Applications Volume 164 , Pages 160-182 (2023).
[14] G. Kersting, N. Kistler, A. Schertzer and M.A. Schmidt (2019). Gibbs Potentials and high temperature

expansions for mean field models. In: Statistical Mechanics of Classical and Disordered Systems, pp
193-214, Springer.

[15] T.-W. Ma, Higher Chain Formula proved by Combinatorics. The Electronic Journal of Combinatorics

16 (2009).
[16] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing An introduction Oxford

University Press No. 111 (2001)
[17] T. Plefka (1982). Convergence condition of the TAP equation for the infinite-ranged Ising spin glass

model. J. Phys. A: Math. Gen. 15, 1971-1978.
[18] Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792-1796 (1975)
[19] Talagrand, M.: Spin Glasses: A Challenge for Mathematicians. A Series of Modern Surveys in Math-

ematics, vol. 46. Springer, Berlin (2003)
[20] Talagrand, M.: Mean Field Models for Spin Glasses. Volume I: Basic Examples. A Series of Modern

Surveys in Mathematics, vol. 54. Springer, Berlin (2011)
[21] Thouless, D.J., Anderson, P.W., and Palmer, R.G.: Solution of ’solvable model in spin glasses’. Philo-

sophical Magazin 35, 593-601 (1977).
[22] Zdeborova, Lenka, and Florent Krzakala. Statistical physics of inference: Thresholds and algorithms.

Advances in Physics 65.5 (2016): 453-552.

S. GUFLER, J.W. GOETHE-UNIVERSITÄT FRANKFURT, GERMANY.
Email address: stephan.gufler@gmx.net

A. SCHERTZER, INSTITUT FÜR ANGEWANDTE MATHEMATIK, BONN UNIVERSITY, GERMANY

Email address: aschertz@uni-bonn.de

M. A. SCHMIDT, J.W. GOETHE-UNIVERSITÄT FRANKFURT, GERMANY.
Email address: m.schmidt@mathematik.uni-frankfurt.de


	1. Introduction and main results
	2. Sketch of the proof and the image
	3. Previous work: The Bolthausen's Algorithmus
	4. Stein TAP
	4.1. Overview
	4.2. Controlling derivatives / Proof of Theorem 9
	4.3. Estimating error terms / Proof of Theorem 8

	5. Covariances of local fields
	6. Fixed point analysis
	7. Proof of Theorem 3
	References

