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COMPLEXITY OF LOCAL MAXIMA OF GIVEN RADIAL DERIVATIVE

FOR MIXED p-SPIN HAMILTONIANS

DAVID BELIUS, MARIUS A. SCHMIDT

Department of Mathematics and Computer Science, University of Basel, Switzerland

Abstract. We study the number of local maxima with given radial derivative of spherical
mixed p-spin models and prove that the second moment matches the square of the first moment
on exponential scale for arbitrary mixtures and any radial derivative. This is surprising, since
for the number of local maxima with given radial derivative and given energy the corresponding
result is only true for specific mixtures [Sub17; BSZ20].

We use standard Kac-Rice computations to derive formulas for the first and second moment
at exponential scale, and then find a remarkable analytic argument that shows that the second
moment formula is bounded by twice the first moment formula in this general setting.

This also leads to a new proof of a central inequality used to prove concentration of the
number critical points of pure p-spin models of given energy in [Sub17] and removes the need
for the computer assisted argument used in that paper for 3 ≤ p ≤ 10.

1. Introduction

The spherical mixed p-spin models are a natural and general class of isotropic differentiable
Gaussian random fields on the sphere. They are paradigmatic models of high-dimensional
complex random landscapes and originate in spin glass theory [SK75; Der80; GM84; Tal00;
KTJ76; CS92; Tal06; CL04; MPV87; Tal10; Pan13]. We study the number of local maxima of
the field with fixed radial derivative. Specifically, we compute the second moment, and show
that on an exponential scale it matches the first moment for any mixed p-spin model and any
radial derivative. This strongly suggests, but does not yet prove, that the number of local
maxima of given radial derivative concentrates around its mean. Expressed in the spin glass
terminology it thus strongly suggests that quenched and annealed complexity of local maxima
of given radial derivative always coincides.

This is surprising, since for the previously studied number of local maxima (or critical points)
at fixed radial derivative and fixed energy this is only true for all radial derivatives and energies
for very special mixed p-spin models, namely the pure p-spin models and their perturbations
[ABČ13; AB13; Sub17; BSZ20].

To state our result, consider a mixed p-spin Hamiltonian HN with mixture ξ on the unit
sphere SN−1 ⊂ R

N , i.e HN is a centered Gaussian field on SN−1 with covariance given by

Cov[HN(σ), HN(τ)] = Nξ(στ),

for σ, τ ∈ SN−1 and στ =
∑N

i=1 σiτi the inner product. Any isotropic centered Gaussian field
on the sphere must have a covariance of this form, and a ξ gives a well-defined covariance for
all N if and only if it is of the form ξ(x) =

∑

p≥0 apx
p for p ≥ 0 with ξ(1) < ∞ [Sch42]. Our
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2 COMPLEXITY FOR GIVEN RADIAL DERIVATIVE

results apply to any ξ of such a form with a0 = a1 = 1 and radius of convergence greater than
1, which is thus a very general class of isotropic Gaussian fields on the sphere. For these ξ the
field HN is almost surely smooth on a ball of radius larger than one (see Lemmata A.1 and A.7
[Bel22]). For ∂r the derivative in radial direction the central object of our study is the number

N (D) = Number of local maxima of HN on SN−1 with
1

N
∂rHN ∈ D.

Note that HN is defined on a ball so that we may speak of its radial derivative, but we always
consider local maxima with respect to the unit sphere. We will use what are by now standard
Kac-Rice computations to show that (see Lemma 2.1)

(1.1)
1

N
lnE[N (D)] → sup

x∈D
I(x),

where the function I is given explicitly in terms of the shorthands ξ′ = ξ′(1) and ξ′′ = ξ′′(1) by

I(x) :=
1

2
ln

(

ξ′′

ξ′

)

− x2

4ξ′′
ξ′′ − ξ′

ξ′′ + ξ′ + Ω

(

x
√

2ξ′′

)

,

for

(1.2) Ω(y) :=







−1
2
y
√

y2 − 2 + ln

(

y+
√

y2−2√
2

)

for y ≥
√
2,

−∞ else.

Writing

(1.3) r∞ := inf{x ∈ R : I(x) ≥ 0} = 2
√

ξ′′ and r0 := sup{x ∈ R : I(x) ≥ 0}
we note that I is −∞ below r∞ and strictly decreasing on [r∞,∞) with I(r0) = 0. This entails
by Markov inequality that with high probability there are no local maxima of HN on SN−1 with
radial derivative significantly above r0 or below r∞. Our main result is the following, which
shows the second and first moment match on exponential scale for any mixture ξ.

Theorem 1.1 (Matching moments on exponential scale). For all x ∈ [r∞, r0] we have

(1.4) lim
εց0

lim
N→∞

1

N
lnE[N ([x− ε, x+ ε])2]− 2

N
lnE[N ([x− ε, x+ ε])] = 0.

Additionally

(1.5) lim
εց0

lim
N→∞

P(N ((−∞, r∞ − ε] ∪ [r0 + ε,∞)) = 0) = 1.

As mentioned above, it is surprising that the matching (1.5) of moments holds for all ξ
with a0 = a1 = 0 and x ∈ [r∞, r0]. Proving the matching of the first and second moment
on exponential scale is the main step when proving concentration around the mean using the
second moment method. Since this main step is achieved by the our theorem we make the
following conjecture.

Conjecture 1.2. For all r ∈ [r∞, r0]

(1.6) lim
εց0

lim
N→∞

1

N
lnN ([x− ε, x+ ε]) = I(x)

in probability.
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In particular, Conjecture 1.2 would imply that the total number of local maxima is in
exp (NI(r∞) + o(N)) with high probability for all ξ.

One way to prove Conjecture 1.2 would be to show that the second moment is asymptotic
to the first moment squared, i.e. a stronger version of (1.4). This seems attainable using
the methods of [Sub17] for mixtures with a2 = 0, but is beyond the scope of this paper1.
Alternatively, if one could obtain a general concentration result for N such as is available e.g.
for Lipschitz functions of independent Gaussian random variables then Conjecture 1.2 could be
derived from the exponential scale matching of moments (1.4).

To prove Theorem 1.1 we follow [Sub17; BSZ20] by using the Kac-Rice formula to compute
a variational formula for the second moment (see Lemma 2.2). The upshot is

1

N
lnE[N (D)2] → sup {S(x, α) : α ∈ (−1, 1), x ∈ D} ,

where S is given by (2.1) below.
It is easily checked that for all x ∈ [r∞, r0] one has S(x, 0) = 2I(x). The main step of the

proof of (1.4) is then an elementary but complicated computation that proves that S(x, α) is
maximized at α = 0, which with (1.1) gives (1.4). Beyond the fact that this holds for any
mixture and x ∈ [r∞, r0], it is also pleasantly surprising that an analytic proof of it can be
obtained.

For pure p-spin mixtures, i.e. for ξ(x) = xp, a result equivalent to Theorem 1.1 was proved in
[Sub17], which studied the number of critical points of pure p-spin models at fixed energy. The
equivalence is due to the fact that at low energies most critical points are local maxima, and
that for pure p-spin models ∂rHN(σ) = pHN(σ) for all σ ∈ SN−1 almost surely and therefore
a restriction on the radial derivative is equivalent to a restriction on the energy. Note however
that for 3 ≤ p ≤ 10 the proof of [Sub17] is computer assisted, as a computer plot is employed
to show that the formula corresponding to S(x, α) is maximized at α = 0 (see [Sub17, Proof of
Lemma 7, Figure 1]. Our proof on the other hand is fully analytic for all ξ.

Since its introduction as a tool for the mathematically rigorous study of spin glasses and
mixed p-spin models [Fyo04; FN12; ABČ13] the use of the Kac-Rice formulas has become
standard. Without distinguishing between the different types of critical points that have been
considered (all critical points, local maxima, saddles of fixed index, etc.), the first moment for
pure mixtures is discussed in [ABČ13; Fyo15], the second moment in [Sub17], the first moment
for mixed models in [AB13; Fyo15] and the second in [BSZ20]. As mentioned above, for pure
models [Sub17] shows that the complexity concentrates around its mean. The results of [BSZ20]
extend this to mixed models that are small perturbation of pure models. The first moment in
the presence of external field is computed in [Fyo15; Bel+22].

Before going into details we discuss the structure of the paper. In Section 2 we compute the
limits in (1.4) in form of Lemma 2.1 for the first moment and Lemma 2.2 for pairs of given
inner product α, which gives the second moment by optimizing over α. In Section 3 we compare
aforementioned limits for non-negative α in Theorem 3.1. Finally in Section 4 we combine our
insights to prove Theorem 1.1.

2. Formulas for annealed one and two point complexities

In this section we control the expected exponential rate of the number of local maxima and
number of pairs of local maxima (see Lemmata 2.1 and 2.2 below) by adapting results of [BSZ20,

1The restriction a2 = 0 is to have approximate independence of M (1) and M (2) for small α, see proof of
Lemma 2.2, [Sub17, Lemma 13 (4.8) and (2)] and [BSZ20, Lemma 14 (4.10) and (2)].
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Theorem 5] from critical points to local maxima. We first state our results and then continue
with the needed proofs.

Lemma 2.1 (First moment). For any open D ⊂ R with 2
√

ξ′′ 6∈ ∂D

lim
N→∞

1

N
lnE[N (D)] = sup

x∈D
I(x).

To state the result on pairs of local maxima properly consider

N2(D,A) = #

{

(σ1, σ2) : σ1σ2 ∈ A, σi loc. max. of HN with
1

N
∂rHN(σi) ∈ D for i ∈ {1, 2}

}

,

where “loc. max.” refers to local maxima on the sphere. With ξ′
α = ξ′(α) and ξ′′

α = ξ′′(α) as
shorthands we define

(2.1) S(x, α) =
1

2
ln

(

(1− α2)ξ′′2

ξ′2 − ξ′
α
2

)

+
x2

2ξ′′
Q(α) + 2 Ω

(

x
√

2ξ′′

)

,

where

(2.2) Q(α) = 1− 2ξ′′(ξ′ − αξ′α + (1− α2)ξ′′α)

ξ′2 − ξ′
α
2
+ (ξ′ − αξ′

α)(ξ
′′ + ξ′′

α) + (1− α2)ξ′′ξ′′
α

which allows us to state our result on pairs of local maxima as follows:

Lemma 2.2 (Two point annealed complexity at exponential scale). It holds for any interval
A ⊂ (−1, 1), that

lim
εց0

lim
N→∞

1

N
lnE [N2 ((x− ε, x+ ε), A)] ≤ sup

α∈A
S(x, α).

The remainder of the section is devoted to the proofs:

Proof of Lemma 2.1. We adapt the proof of [BSZ20, Theorem 5] with q = 1, B = R and
consider local maxima instead of critical points. The change to local maxima only causes an
extra indicator of the event {λmax

(

∇2
spHN(σ)

)

< 0} to appear, when using Kac-Rice formula
[AT07, Theorem 12.1.1], since a critical point σ on this event is a local maximum and vice versa
almost surely. Following the proof up to [BSZ20, (4.2)], conditioning on the radial derivative,
but not on the energy, and carrying the indicator along we obtain
(2.3)

E[N (D)] = exp

(

N

(

1

2
+

1

2
ln

(

ξ′′

ξ′

))

+ o(N)

)

×

×
∫

D

exp

(

−N
x2

2(ξ′ + ξ′′)

)

E

[∣

∣

∣

∣

∣

det

(

G−
√

N

N − 1

x

ξ′′ IN−1

)∣

∣

∣

∣

∣

1{

λmax(G)<
√

N
N−1

x√
ξ′′

}

]

dx,

where IN−1 is the identity matrix of dimension N − 1, λmax is the largest eigenvalue and G is a
normalized GOE matrix of dimension N−1, i.e it is real symmetric with otherwise independent
centered Gaussian entries of variance 1

N−1
off the diagonal and variance 2

N−1
on the diagonal.

This reduces the problem to computing the 1
N
ln limit of the expectation and applying Laplace

principle. Let λ1 ≤ λ2 ≤ ... ≤ λN−1 be the eigenvalues of G−
√

N
N−1

x√
ξ′′
IN−1. If x < 2

√

ξ′′ we

have by Cauchy-Schwartz and estimating roughly

E

[

N−1
∏

i=1

|λi|1{λN−1<0}

]

≤ E[λ
2(N−1)
N−1 ]1/2P(λN−1 < 0)1/2.
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Now by [BDG01, Lemma 6.3] the first term is at most of order exp(constN), while the second
term decays as exp(−constN2), since it requires a macroscopic change of the empirical spectral
distribution of a GOE matrix which has LDP of rate N2 see e.g. [BDG01, Theorem 6.1]. Hence
x < 2

√

ξ′′ contribute −∞ to the 1
N
ln limit of the expectation. On the other hand if x > 2

√

ξ′′

we have

E

[

N−1
∏

i=1

|λi|1{λN−1<0}

]

= E

[

N−1
∏

i=1

|λi|
]

− E

[

N−1
∏

i=1

|λi|1{λN−1≥0}

]

,

where by [BSZ20, (4.3)] we have
(2.4)

lim
ǫց0

lim
N→∞

1

N
ln

(

∫ y+ǫ

y−ǫ

E

[

N−1
∏

i=1

|λi|
]

dx

)

=
y2

4ξ′′ −
1

2
− y

4
√

ξ′′

√

y2

ξ′′
− 4+ln

(
√

y2

4ξ′′ − 1 +
y

2
√

ξ′′

)

and by Cauchy-Schwarz followed by application of [Sub17, Corollary 22 and 23] gives us

E

[

N−1
∏

i=1

|λi|1{λN−1≥0}

]

≤ E

[

N−1
∏

i=1

|λi|2
]1/2

P (λN−1 ≥ 0)1/2 ≤ C E

[

N−1
∏

i=1

|λi|
]

P (λN−1 ≥ 0)1/2

for some constant C > 0 independent of N . For x > 2
√

ξ′′ we have by [BDG01, Theorem
6.2] that P(λN−1 ≥ 0) → 0 and therefore the indicator does not contribute to the limit for
x > 2

√

ξ′′. Collecting cases we have shown that

(2.5)

lim
ǫց0

lim
N→∞

1

N
ln

(

∫ y+ǫ

y−ǫ

E

[

N−1
∏

i=1

|λi|1{λN−1<0}

]

dx

)

=

=







y2

4ξ′′
− 1

2
− y

4
√

ξ′′

√

y2

ξ′′
− 4 + ln

(

√

y2

4ξ′′
− 1 + y

2
√

ξ′′

)

for y ≥ 2
√

ξ′′

−∞ else

Applying Laplace principle to (2.3) using (2.5) yields the claim. �

Proof of Lemma 2.2. Since all local maxima are critical points we have for by [BSZ20, The-
orem 6] for q1 = q2 = 1, B1 = B2 = R, D1 = D2 = (x− ε, x+ ε) and I = A that

lim
εց0

lim sup
N→∞

E[N2(D1, I)] ≤ sup
α∈A,u1,u2∈R

Ψξ,1,1(α, u1, u2, x, x),

where Ψ is given in [BSZ20, (3.7)]. The optimization with respect to u1, u2, using Laplace
principle on correlated Gaussian tails, yields

sup
u1,u2∈R

−1

2
(u1, u2, x, x)Σ

−1
U,X(α, 1, 1)(u1, u2, x, x)

T = −1

2
(x, x)Σ−1

X (α, 1, 1)(x, x)T ,

where by [BSZ20, (A.3)]

ΣX(α, 1, 1) =

(

ξ′′ + ξ′ − (αξ′′α+ξ′α)
2(1−α2)ξ′

ξ′2−(αξ′α−ξ′′α(1−α2))2
α2ξ′′α + αξ′α − (αξ′′α+ξ′α)

2(1−α2)(αξ′α−ξ′′α(1−α2))

ξ′2−(αξ′α−ξ′′α(1−α2))2

α2ξ′′
α + αξ′

α − (αξ′′α+ξ′α)
2(1−α2)(αξ′α−ξ′′α(1−α2))

ξ′2−(αξ′α−ξ′′α(1−α2))2
ξ′′ + ξ′ − (αξ′′α+ξ′α)

2(1−α2)ξ′

ξ′2−(αξ′α−ξ′′α(1−α2))2

)

.

For x ≥ 2
√

ξ′′ we obtain the claim, being careful to not confuse Ω in (1.2) with [BSZ20, (3.3)],
by verifying that

−1

2
(x, x)Σ−1

X (α, 1, 1)(x, x)T +
x2

2ξ′′
=

x2

2ξ′′
Q(α),
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which is a straightforward computation using that (x, x)Σ−1
X (α, 1, 1)(x, x)T = 2x2

ΣX(α,1,1)1,1+ΣX(α,1,1)1,2

and canceling ξ′ + αξ′α − ξ′′
α(1− α2). It remains to show for x < 2

√

ξ′′ that

lim
εց0

lim sup
N→∞

E[N2(D1, I)] = −∞.

To this end we follow the proof of [BSZ20, Theorem 6] for q1 = q2 = 1, B1 = B2 = R,
D1 = D2 = (x− ε, x+ ε) and insert an additional indicator (with the same argument as in the
proof of Lemma 2.1) to adjust for the change from critical points to local maxima. We arrive
at [BSZ20, (4.12)], which reads for our case:

E[N2(D,A)] = CN

∫

A

D(α)N−3F(α)E

[

2
∏

i=1

∣

∣

∣
det
(

M
(i)
N−1(α)

)∣

∣

∣
1Ei

]

,

where

CN = ωNωN−1

(

1

2π
(N − 1)

ξ′′

ξ′

)N−1

, ωN = 2
πN/2

Γ(N/2)
,

D(α) =
√
1− α2

√

1− ξ′
α
2

ξ′2 ,

F(α) =

√

1− ξ′
α
2

ξ′2

√

1−
(

αξ′
α − ξ′′

α(1− α2)

ξ′

)2

,

Ei = {Xi(α) ∈
√
ND, λmax(M

(i)
N−1(α)) < 0},

and X1(α), X2(α),M
(1)
N−1(α),M

(2)
N−1(α) have joint distribution given by [BSZ20, Lemma 15].

The terms CN ,D(α)N−1,F(α) are all bounded by exp(constN) and therefore the claim follows
immediately from the Cauchy-Schwartz inequality if we show that

E

[

2
∏

i=1

det
(

M
(i)
N−1(α)

)2
]

≤ exp(constN),

since by the eigenvalue interlacing theorem E1, E2 require a large deviation of the empirical
spectral measure of a GOE and therefore by [BDG01, Theorem 6.1] the probabilities of E1, E2

vanish as exp(−constN2). By Cauchy Schwartz using that M (1) and M (2) have the same
distribution and roughly estimating we see that

(2.6) E

[

2
∏

i=1

det
(

M
(i)
N−1(α)

)2
]

≤ E

[

(

|λ|max(M
(1)(α))

)4(N−1)
]

.

That this is bounded by exp(constN) follows immediately from the tail estimate

(2.7) P
(

|λ|max(M
(1)(α)) > t

)

≤ exp(−constt2N).

This is easily obtained from the fact that M (1)(α) is defined as
(

GN−2
~0

~0T 0

)

+

(

0N−2 Z(1)(α)
Z(1)(α)T 0

)

+

(

0 ~0

~0T Q(i)(α) +
√

N
N−1ξ′′

mi(α, 1, 1)

)

−
√

1

(N − 1)ξ′′X1(α)IN−1,

and that all terms have operator norm with tails satisfying (2.7). Here the top left entry always
has dimension (N − 2) × (N − 2) and the bottom right 1 × 1. Also GN−2 a normalized GOE
matrix. Lastly IN−1 is the dimension N − 1 identity matrix and 0N−2, ~0 are the zero matrix
and vector respectively. For more details see [BDG01, (4.9) and (4.13)]. The first term is
a normalized GOE matrix and the claimed tail estimate is given by e.g. [BDG01, Lemma
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6.3]. The second term has operator norm which is up to multiplicative constant the root of
a χ2(N − 1) distributed random variable. Since the rate function of the χ2(1) distribution is
asymptotically linear at ∞ the claimed tail bound follows. The operator norms of the third
and fourth terms are the absolute value of a Gaussian with variance of order N−1, which have
tails as claimed, which concludes the argument that (2.6) is at most exp (constN) and therefore
yields the claim. �

3. Maximization of two point annealed complexity formula

In this section we prove that the two point complexity S on [0, 1] is maximized at α = 0.

Theorem 3.1 (Second moment complexity formula is maximized at α = 0). For all x ∈ R and
all mixtures not of form ξ(x) = cx2 we have

I(x) ≥ 0 ⇒ sup
α∈[0,1]

S(x, α) = S(x, 0) = 2I(x).

Remark 3.2. a) We will later in the proof of Theorem 1.1 use simple and general geometric
considerations to show that α < 0 can be ignored, see (4.1) and Remark 4.1 below for details.

b) The fact that α = 0 maximizes S means that most pairs of local maxima of given radial
derivative are approximately orthogonal. In the terminology of spin glasses one can say that
they are “replica symmetric”.

The proof we give here is elementary in nature but by no means trivial. It is guided by
seeking a sense of algebraic beauty and could not have been reasonably derived without use of
numerical checks and computer algebra. While checking step by step is elementary it is hard
even for the authors to see a guiding principle.

Proof of Theorem 3.1. Let α ∈ (0, 1) and ξ be a mixture not of form ξ(x) = cx2 and consider

(3.1) S(x, 0)− S(x, α) =
1

2
ln

(

ξ′2 − ξ′
α
2

(1− α2)ξ′2

)

+
x2

2ξ′′
(Q(0)−Q(α)).

By the definition (2.2) of Q we have

Q(0)−Q(α) = 2ξ′′
(

ξ′ − αξ′α + (1− α2)ξ′′
α

ξ′2 − ξ′
α
2
+ (ξ′ − αξ′

α)(ξ
′′ + ξ′′

α) + (1− α2)ξ′′ξ′′
α

− 1

ξ′ + ξ′′

)

.

Since

(ξ′ + ξ′′)
(

ξ′ − αξ′α + (1− α2)ξ′α
′)−

(

ξ′2 − ξ′α
2
+ (ξ′ − αξ′

α)(ξ
′′ + ξ′′

α) + (1− α2)ξ′′ξ′′
α

)

= −αξ′αξ
′ − ξ′α2ξ′′α + ξ′

α
2
+ αξ′αξ

′′
α

= (ξ′
α − αξ′) (ξ′

α + αξ′′α)

,

we obtain

(3.2) Q(0)−Q(α) =
2ξ′′

ξ′ + ξ′′
2ξ′′(ξ′

α − αξ′)(ξ′α + αξ′′α)

ξ′2 − ξ′α
2
+ (ξ′ − αξ′α)(ξ

′′ + ξ′′α) + (1− α2)ξ′′ξ′′α
< 0,

where the negativity is due to ξ′α − αξ′ being the only negative term. The next lemma will be
used to bound the term x2

2ξ′2
in (3.1).

Lemma 3.3. For any mixture not of form ξ(x) = cx2 we have

I (x) ≥ 0 ⇒ 2 ≤ x2

2ξ′′
<

ξ′′ + ξ′

ξ′′ − ξ′
ln

(

ξ′′

ξ′

)

.
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Proof. The lower bound on x2

2ξ′′
follows immediately from the definition of I, which is −∞ if

x2

2ξ′′
< 2. Assume x2

2ξ′′
≥ ξ′′+ξ′

ξ′′−ξ′
ln
(

ξ′′

ξ′

)

. We will now prove that this implies I(x) < 0. Note that
h given by

h : [1,∞) → R x 7→
{

x+1
x−1

ln(x) for x > 1,

2 for x = 1,

is continuous and strictly increasing. Using that the mixture is not of form cx2 we have ξ′′ > ξ′

and therefore
x2

2ξ′′
≥ ξ′′ + ξ′

ξ′′ − ξ′ ln

(

ξ′′

ξ′

)

= h

(

ξ′′

ξ′

)

> h(1) = 2.

Using that Ω′(y) = −
√

y2 − 2 and Ω(
√
2) = 0 we have Ω(y) < 0 for y >

√
2, which gives

I(x) =
1

2
ln

(

ξ′′

ξ′

)

− x2

4ξ′′
ξ′′ − ξ′

ξ′′ + ξ′ + Ω

(

x
√

2ξ′′

)

<
1

2
ln

(

ξ′′

ξ′

)

− ξ′′ + ξ′

ξ′′ − ξ′ ln

(

ξ′′

ξ′

)

1

2

ξ′′ − ξ′

ξ′′ + ξ′ = 0.

�

Applying Lemma 3.3 to (3.1) while recalling (3.2) we have

(3.3) S(x, 0)− S(x, α) >
1

2
ln

(

ξ′2 − ξ′
α
2

(1− α2)ξ′2

)

+
ξ′′ + ξ′

ξ′′ − ξ′
ln

(

ξ′′

ξ′

)

(Q(0)−Q(α)).

The next lemma bounds the quantity in the log in this expression.

Lemma 3.4. For α ∈ [0, 1) we have

1 ≤ ξ′2 − ξ′
α
2

(1− α2)ξ′2 ≤ ξ′′

ξ′ .

Proof. For α = 0 the left inequality is sharp and for α → 1 the right. Hence the proof is
completed by proving that the function

g(α) :=
ξ′2 − ξ′α

2

(1− α2)ξ′2

is increasing. By computing g′

g′(α) = 2
α(ξ′2 − ξ′

α
2
)− (1− α2)ξ′

αξ
′′
α

(1− α2)2ξ′2

we observe that g is increasing if and only if

(3.4)
ξ′2 − ξ′

α
2

1− α2
≥ ξ′

α

α
ξ′′
α.

By using that ξ′′α is non negative and increasing for α ∈ [0, 1] we obtain ξ′ − ξ′
α =

∫ 1

α
ξ′′
αdα ≥

(1− α)ξ′′α which implies

ξ′2 − ξ′
α
2

1− α2
≥ ξ′′

α

ξ′ + ξ′α
1 + α

= ξ′′
α

∑

p≥2

app
1 + αp−1

1 + α
.

Using that 1 ≥ αp−2 we further estimate

≥ ξ′′
α

∑

p≥2

app
αp−2 + αp−1

1 + α
= ξ′′α

∑

p≥2

appα
p−2 = ξ′′

α

ξ′
α

α
,
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which yields (3.4). �

We can use Lemma 3.4 together with the fact that (the continuous continuation on [1,∞)

of)
√
z

z−1
ln(z) is decreasing together with to obtain

√

ξ′2−ξ′α
2

(1−α2)ξ′2

ξ′2−ξ′α
2

(1−α2)ξ′2
− 1

ln

(

ξ′2 − ξ′
α
2

(1− α2)ξ′2

)

≥

√

ξ′′

ξ′

ξ′′

ξ′
− 1

ln

(

ξ′′

ξ′

)

.

Applying this to (3.3) we obtain

S(x, 0)− S(x, α) > ln

(

ξ′′

ξ′

)







1

2

√

ξ′′

ξ′

(

ξ′2−ξ′α
2

(1−α2)ξ′2
− 1
)

√

ξ′2−ξ′α
2

(1−α2)ξ′2

(

ξ′′

ξ′
− 1
)
+

ξ′′ + ξ′

ξ′′ − ξ′
(Q(0)−Q(α))






.

Since ln
(

ξ′′

ξ′

)

> 0 it suffices to show that

4

√

ξ′2 − ξ′
α
2

(1− α2)ξ′2 ≤

√

ξ′′

ξ′

(

ξ′2−ξ′α
2

(1−α2)ξ′2
− 1
)

(

ξ′′

ξ′
− 1
)

ξ′′+ξ′

ξ′′−ξ′
1
2
(Q(α)−Q(0))

.

Multiplying both sides by (1− α2)
√

ξ′′

ξ′
and canceling terms this reads

(3.5) 4

√

1−
(

ξ′
α

ξ′

)2√
1− α2

√

ξ′′

ξ′
≤ 1

ξ′2
α2ξ′2 − ξ′α

2

ξ′′+ξ′

ξ′′
1
2
(Q(α)−Q(0))

.

Plugging in the equality in (3.2) the right hand side reads

α2 −
(

ξ′α
ξ′

)2

(αξ′ − ξ′
α)(ξ

′
α + αξ′′

α)

(

ξ′2 − ξ′
α
2
+ (ξ′ − αξ′α)(ξ

′′ + ξ′′α) + (1− α2)ξ′′ξ′′
α

)

.

By multiplying the fraction and dividing the bracket by ξ′2 and canceling we obtain equality to

=
αξ′ + ξ′

α

ξ′
α + αξ′′α

(

1− ξ′
α
2

ξ′2 + (1− α2)
ξ′′ξ′′α
ξ′2 + (1− α

ξ′
α

ξ′ )
ξ′′ + ξ′′

α

ξ′

)

.

Lemma 3.5 stated immediately below implies (3.5), by adding (3.6) and (3.7). Therefore the
proof of Theorem 3.1 is finished once we have proved Lemma 3.5.

Lemma 3.5. For α ∈ (0, 1), we have

(3.6) 2

√

1−
(

ξ′α
ξ′

)2√
1− α2

√

ξ′′

ξ′
≤
(

1− α
ξ′
α

ξ′

)

ξ′′ + ξ′′
α

ξ′
αξ′ + ξ′

α

ξ′
α + αξ′′α

as well as

(3.7) 2

√

1−
(

ξ′α
ξ′

)2√
1− α2

√

ξ′′

ξ′
≤
(

1− ξ′
α
2

ξ′2 + (1− α2)
ξ′′ξ′′

α

ξ′2

)

αξ′ + ξ′α
ξ′
α + αξ′′

α

.

Inequalities (3.6) and (3.7) certainly look artificial at first glance, but a surprising structure
is in fact hidden under the surface, which is brought to the fore by the following Lemma 3.6.

The proof of Lemma 3.5 requires certain key observations discussed by Lemmata 3.6, 3.9 and
3.8. Hence we prove these Lemmata first and only then return to the proof of Lemma 3.5.



10 COMPLEXITY FOR GIVEN RADIAL DERIVATIVE

Lemma 3.6. With f(x) = x+ 1
x

we have

(3.6) ⇔ 2f(
√
W ) ≤ f(

√
U)f(

√
V ),

for U =
ξ′′

ξ′′
α

, V =
α

ξ′α

ξ′2 − ξ′
α
2

(1− α2)ξ′ ,W =
ξ′
α

αξ′′α
.

as well as

(3.7) ⇔ 2f(
√
Z) ≤ f(

√
X)f(

√
Y ),

for X =
ξ′2 − ξ′α

2

ξ′′ξ′′
α(1− α2)

, Y =
αξ′

ξ′
α

, Z =
ξ′α
αξ′′

α

.

Proof. We start deriving the first equivalence by writing out (3.6), replacing all instances of ξ′′

by Uξ′′
α, as well as dividing by

√
U , which yields

2

√

1−
(

ξ′α
ξ′

)2√
1− α2

√

ξ′′α
ξ′

≤
(

1− α
ξ′
α

ξ′

)

f(
√
U)ξ′′

α(αξ
′ + ξ′

α)

ξ′(ξ′
α + αξ′′

α)
.

Next we replace all instances of ξ′′
α by ξ′α

αW
; multiply by W+1 and use

(

1− α ξ′α
ξ′

)

1
αξ′

(αξ′ + ξ′α) =

1− ξ′α
2

ξ′2
+ (1− α2) ξ′α

αξ′
to obtain

2f(
√
W )

√

1−
(

ξ′
α

ξ′

)2√
1− α2

√

ξ′
α

αξ′
≤ f(

√
U)

(

1− ξ′
α
2

ξ′2 + (1− α2)
ξ′α
αξ′

)

.

Dividing by the roots on the left hand side and using the definition of V we easily obtain
equivalence to

2f(
√
W ) ≤ f(

√
U)f(

√
V )

as claimed.
For the second equivalence we proceed in the same fashion. Writing down (3.7), replacing

all instances of ξ′′ with ξ′2−ξ′α
2

Xξ′′α(1−α2)
and multiplying by

√
X we have

2

(

1−
(

ξ′α
ξ′

)2
)
√

ξ′

ξ′′α
≤ f(

√
X)

(

1− ξ′
α
2

ξ′2

)

αξ′ + ξ′α
ξ′
α + αξ′′α

.

After removing the factor 1− ξ′α
2

ξ′2
from both sides we replace all remaining instances of ξ′′

α with
ξ′α
αZ

and multiply by 1 + 1
Z

to obtain

2f(Z)

√

αξ′

ξ′α
≤ f(

√
X)

αξ′ + ξ′
α

ξ′
α

.

Reorganizing the remaining terms and replacing with Y we immediately obtain the claim. �

The first part of Lemma 3.5 will follow easily from the next lemma.

Lemma 3.7. For all α ∈ (0, 1) it holds that

V ≥ W−1 ≥ 1,

for V,W as in Lemma 3.6.
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Proof. Since we only consider p ≥ 2 it is easy to check that W−1 ≥ 1. The claim V ≥ W−1 is
equivalent to

(3.8)
ξ′α

2

ξ′2 + (1− α2)
ξ′′
α

ξ′ ≤ 1.

Consider the distribution given by P(P = p) ∝ app and write (3.8) as follows

E[αP−1]2 + (1− α2)E[(P − 1)αP−2] ≤ 1.

This inequality follows by estimating EQ[α
P−1]2 ≤ EQ[α

2P−2] and realizing that

(3.9) α2P−2 + (1− α2)(P − 1)αP−2 ≤ 1

for all α ∈ [0, 1] and P ≥ 2.
To verify (3.9) first note for α ∈ [0, 1]

(3.10)
∂

∂α

(

α2P−2 + (1− α2)(P − 1)αP−2
)

= (P − 1)αP−3
(

2αP − 2α2 + (P − 2)(1− α2)
)

.

Letting
hP (α) := 2αP − 2α2 + 2α2 + (P − 2)(1− α2) = 2αP + P − 2− Pα2,

we have
h′
P (α) = 2P (αP−1 − α) ≤ 0,

and therefore hP (α) ≥ hP (1) = 0. From this we see that (3.10) is non-negative, so (3.8) follows
since it trivially holds for α = 1. �

We are now ready to prove the first part of Lemma 3.5.

Proof of (3.6). By Lemma 3.6 and using its notation it suffices to show that

2f(
√
W ) ≤ f(

√
U)f(

√
V ).

Clearly f is always at least 2 and therefore this in turns follows from

f(
√
W ) ≤ f(

√
V ),

which is a consequence of Lemma 3.7. This completes the proof of (3.6). �

Before proving the second part of Lemma 3.5 we prove two inequalities involving

S =
Y + 1

2

(

1− α

2

Y − 1

Y

)

.

The first is:

Lemma 3.8. We have for α ∈ (0, 1)

(3.11) 2f(
√
Z) ≤ f(

√
SZ)f(

√
Y ).

Proof. Dividing (3.11) by
√
Z we obtain the equivalent representation

2 + 2Z−1 ≤
√
Sf(

√
Y ) + Z−1f(

√
Y )√
S

.

Hence it suffices to show

Z−1

(

2− f(
√
Y )√
S

)

≤
√
Sf(

√
Y )− 2.
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By observing that

(3.12)
f(
√
Y )2

4S
=

Y + 2 + Y −1

2(Y + 1)
(

1− α
2
Y−1
Y

) = 1− (1− α)(Y − Y −1)

2(Y + 1)
(

1− α
2
Y−1
Y

) < 1,

since α ∈ (0, 1) and Y > 1, we obtain 2− f(
√
Y )√
S

≥ 0. Therefore (3.11) is also equivalent to

(3.13) Z−1 ≤
√
Sf(

√
Y )− 2

2− f(
√
Y )√
S

.

Reformulating the right hand side of this inequality yields
√
Sf(

√
Y )− 2

2− f(
√
Y )√
S

=
(
√
Sf(

√
Y )− 2)(2 + f(

√
Y )√
S

)

4− f(
√
Y )2

S

=
S(f(

√
Y )2 − 4) + 2f(

√
Y )(S − 1)

√
S

4S − f(
√
Y )2

.

(3.14) =

{

(S − 1)f(
√
Y )2 + f(

√
Y )2 − 4S

}

+ (S − 1)f(
√
Y )2
√

4S
f(

√
Y )2

4S − f(
√
Y )2

.

We then use the easily checked representations

S =
(Y + 1)2

4Y

(

1 + (1− α)
Y − 1

Y + 1

)

and f(
√
Y )2 =

(Y + 1)2

Y

to compute (3.14) piece by piece as follows

S − 1 =
Y − 1

4Y
((2− α)Y − α) ,

(S − 1)f(
√
Y )2 = (Y (2− α)− α)

(Y − 1)(Y + 1)2

4Y 2
,

4S

f(
√
Y )2

= 1 + (1− α)
Y − 1

Y + 1
,

4S − f(
√
Y )2 = (1− α)

(Y − 1)(Y + 1)

Y
.

Using the computations so far we also obtain for the curly bracket in (3.14)

(S − 1)f(
√
Y )2 − 4S + f(

√
Y )2 = ((Y (2− α)− α)) (Y + 1)− 4(1− α)Y )

(Y − 1)(Y + 1)

4Y 2
,

where the first factor on the LHS equals

(Y (1 + 1− α)− 1 + 1− α) (Y + 1)− 4 (1− α)Y
= (Y − 1) (Y + 1) + (1− α) {(Y + 1) {Y + 1} − 4Y }
= Y 2 − 1 + (1− α) (Y − 1)2 = (Y 2 − 1)

(

1 + (1− α) Y−1
Y+1

)

.

Collecting the pieces of (3.14) we computed and multiplying enumerator and denominator
by 4Y 2

(Y+1)(Y −1)
we obtain

√
Sf(

√
Y )− 2

2− f(
√
Y )√
S

=
(Y 2 − 1)

(

1 + (1− α)Y−1
Y+1

)

+ (Y (2− α)− α) (Y + 1)
√

1 + (1− α)Y−1
Y+1

4(1− α)Y
.
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By using the trivial estimate 1 + (1− α)Y−1
Y+1

≥ 1 (recall Y > 1) twice we clearly have
√
Sf(

√
Y )− 2

2− f(
√
Y )√
S

≥ Y 2 − 1 + (Y (2− α)− α) (Y + 1)

4(1− α)Y
=

1

4

Y + 1

Y

(

2
Y − 1

1− α
+ Y + 1

)

.

Estimating further using Y + 1 ≥ 2 then yields

(3.15)

√
Sf(

√
Y )− 2

2− f(
√
Y )√
S

≥ 1

2

Y + 1

Y

(

Y − 1

1− α
+ 1

)

.

It remains to show that

(3.16) Z−1 ≤ 1

2

Y + 1

Y

(

Y − 1

1− α
+ 1

)

,

since then (3.13) and thereby the claim immediately follow from (3.15). By definition of Y and
Z, after dividing both sides by Y , (3.16) reads

(3.17)
αξ′′α
ξ′ ≤ 1

2

ξ′
α

αξ′

(

1 +
ξ′α
αξ′

)

(

αξ′

ξ′α
− 1

1− α
+ 1

)

=
1

2

(

1 +
ξ′
α

αξ′

)

1− ξ′α
ξ′

1− α
.

With P ≥ 2 a random variable with P(P = p) ∝ app we can write (3.17) as

(3.18) E[(P − 1)αP−2] ≤ 1

2

(

1 + E[αP−2]
) 1− E[αP−1]

1− α
.

Multiplying by 2(1 − α) and bringing all terms except the 1 to the left hand side we have the
equivalent representation

E[2(P − 1)(1− α)αP−2]− (1− α)E[αP−2] + αE[αP−2]2 ≤ 1.

But by Cauchy Schwartz inequality and linearity of expectation

E[2(P − 1)(1− α)αP−2]− (1− α)E[αP−2] + αE[αP−2]2 ≤ E[αP−2
(

(2P − 3)(1− α) + αP−1
)

].

Then (3.18) and (3.17) follows once we have show that

(3.19) αP−2
(

(2P − 3)(1− α) + αP−1
)

≤ 1 for all α ∈ [0, 1], P ≥ 2.

To this end note that

∂

∂α

(

αP−2
(

αP−1 + (2P − 3)(1− α)
))

= (2P − 3)αP−3hP (α)

for
hP (α) := P − 2− (P − 1)α+ αP−1,

and hP (α) ≥ hP (1) = 0 by checking that h′
P (α) ≤ 0. Since (3.19) trivially holds for α = 1 this

proves (3.19), and finishes the proof. �

The second inequality we need for the second second part of Lemma 3.5 is:

Lemma 3.9. We have for α ∈ (0, 1)

ξ′′α ≥ ξ′ ⇒ f(
√
SZ) ≤ f(

√
X).
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Proof. The claim follows immediately from

X ≤ SZ ≤ 1.

The second inequality is quickly checked by writing it out partially

SZ =
αξ′ + ξ′α
2αξ′′α

(

1− α

2

Y − 1

Y

)

and observing that ξ′ ≤ ξ′′
α by assumption, ξ′

α ≤ αξ′′α trivially, remembering that Y ≥ 1 and
checking that both factors are at most 1.

It remains to check X ≤ SZ. By definition

X =
ξ′2 − ξ′

α
2

ξ′′ξ′′
α(1− α2)

=

∫ 1

α
ξ′′(t)dt

1− α

ξ′ + ξ′α
ξ′′ξ′′α(1 + α)

.

Since α ∈ [0, 1] and ξ′′ is convex on [0, 1] we have
∫

1

α
ξ′′(t)dt

1−α
≤ ξ′′+ξ′′α

2
and so

X ≤ ξ′′ + ξ′′α
2

ξ′ + ξ′
α

ξ′′ξ′′α(1 + α)
=

ξ′
α

2αξ′′α

(

1 +
ξ′′
α

ξ′′

)(

1 +
ξ′

ξ′
α

)

α

1 + α
.

Consider random variables P,Q ≥ 2 with P(P = p) ∝ app and P(Q = p) ∝ app(p− 1). Clearly
P(P ≥ k) ≤ P(Q ≥ k) and so since α ∈ (0, 1) and P ≥ 2

(3.20)
ξ′′
α

ξ′′
= E[αQ−2] ≤ E[αP−2] =

ξ′
α

αξ′
.

Thus

X ≤ ξ′
α

2αξ′′α

(

1 +
ξ′
α

αξ′

)(

1 +
ξ′

ξ′α

)

α

1− α
=

Z

2
(1 + Y −1)

α+ Y

1 + α
= Z

Y + 1

2

(

1− α

1 + α

Y − 1

Y

)

.

Remembering that Y ≥ 1 and estimating 1 + α ≤ 2 yields X ≤ ZS, i.e. the claim. �

We are now ready to prove the second part of Lemma 3.5.

Proof of (3.7). By Lemma 3.6 we need to prove

2f(
√
Z) ≤ f(

√
X)f(

√
Y ).

To this end first note that if ξ′ ≥ ξ′′α the claim follows immediately, since then Y ≥ Z−1 ≥ 1

and therefore f(
√
Y ) ≥ f(

√
Z), using that f(x) ≥ 2. Hence we can assume ξ′ < ξ′′

α and by
Lemma 3.8 and Lemma 3.9 the claim follows. �

This completes the proof of Lemma 3.5, and as explained above the statement of that lemma,
it also completes the proof of Theorem 3.1. �

4. Proof of the main results

This section is devoted to the proof of Theorem 1.1.

Proof of Theorem 1.1. Equation (1.5) follows immediately from Lemma 2.1 and Markov
inequality, recalling (1.3). When ξ(x) = cx2 one can check that S(x, α) = 2Ω( x

2
√
c
) for all α so

the claim trivially follows. Hence we assume the contrary for the remainder of the proof.
To verify (1.4) note that for any measurable set D by Cauchy Schwartz inequality we have

E[N (D)]2 ≤ E[N (D)2],

hence it is sufficient to show that the reverse inequality holds on exponential scale.
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To this end note that for any δ > 0

(4.1) 0 ≤

∣

∣

∣

∣

∣

∣

∑

σ∈N (D)

σ

∣

∣

∣

∣

∣

∣

2

2

=
∑

(σ,τ)∈N2(D,[−1,1])

στ ≤ N2(D, (−δ, 1])− δN2(D, [−1,−δ])

and therefore

(4.2) N2(D, [−1, 1]) ≤ (
1

δ
+ 1)N2(D, [−δ, 1]).

Using N2(D, [−1, 1]) = N (D)2 we obtain

limεց0 limN→∞
1
N
lnE[N ((x− ε, x+ ε))2]

≤ limεց0 limN→∞
1
N
lnE [N ((x− ε, x+ ε)) +N2 ((x− ε, x+ ε), [−δ, 1))] .

Applying Lemmata 2.1 and 2.2 yields that this is at most

max

{

sup
α∈[−δ,1)

S(x, α), I(x)

}

.

Since S is continuous in α we may optimize over δ > 0. Furthermore by assumption x ∈ [r∞, r0]
and therefore S(x, 0) = 2I(x) ≥ I(x) ≥ 0. Hence we obtain overall

lim
εց0

lim
N→∞

1

N
ln
(

E[N ((x− ε, x+ ε))2]
)

≤ sup
α∈[0,1]

S(x, α).

By Theorem 3.1 this supremum is attained in α = 0 and the claim follows since

sup
α∈[0,1]

S(x, α) = S(x, 0) = 2I(x) = lim
εց0

lim
N→∞

2

N
ln (E[N ((x− ε, x+ ε))]) .

�

Remark 4.1. The estimate (4.2) can be improved to

E[N2(D, [−1, 1])] ≤ (1 + o(1))E[N2(D, [−δ, 1])]

by replacing (4.1) with

0 ≤

∣

∣

∣

∣

∣

∣

∑

σ∈N (D)

σ

∣

∣

∣

∣

∣

∣

2

2

=
∑

(σ,τ)∈N2(D,[−1,1])

στ ≤ δ2N2(D, (−δ, δ2])− δN2(D, [−1,−δ]) +N2(D, (δ2, 1])

and applying Lemmata 2.1, 2.2 and Theorem 3.1. While this is not necessary on an exponential
scale it will be necessary if one wants to show matching of moments up to multiplicative error
1 + o(1) to prove concentration on the mean as in [Sub17].
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