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Abstract

We study isotropic Gaussian random fields on the high-dimensional sphere with an
added deterministic linear term, also known as mixed p-spin Hamiltonians with external
field. We prove that if the external field is sufficiently strong, then the resulting function
has trivial geometry, that is only two critical points. This contrasts with the situation of
no or weak external field where these functions typically have an exponential number of
critical points. We give an explicit threshold hc for the magnitude of the external field
necessary for trivialization and conjecture hc to be sharp. The Kac-Rice formula is our
main tool. Our work extends [Fyo15], which identified the trivial regime for the special
case of pure p-spin Hamiltonians with random external field.

1 Introduction
Isotropic Gaussian random fields on the sphere are paradigmatic high dimensional complex
functions. Due to their appearance in spin glass models in statistical physics, they are also
known as mixed p-spin spherical Hamiltonians. One manifestation of the complexity is the
presence, in general, of an exponentially large number of critical points (this has been proven
for the special case of pure p-spin Hamiltonians [Fyo15; ABČ13; Sub17a] and their perturbations
[AB13; BSZ20] and is expected to be generic beyond these special cases). In this paper, we prove
that in the presence of a deterministic linear term (external field in the physics terminology)
with strength above a certain threshold, the geometry of such functions trivializes in the sense
that the only critical points of these random function are one maximum and one minimum. This
extends [FL14] which exhibited the trivialization phenomenon for pure 2-spin Hamiltonians, and
[Fyo15] which identified the trivial regime for pure p-spin Hamiltonians with random external
field, and makes mathematically rigorous part of the results of [Ros+19] which demonstrated
triviality for pure p-spin Hamiltonians with deterministic external field using physics methods.
Our result proves trivialization for any mixed p-spin spherical Hamiltonian, which includes pure
p-spin Hamiltonians as a special case, as well as Hamiltonians with a Gaussian random external
field (see the discussion below Theorem 1.2). We further characterize the energies and other
properties of the unique maximizer and minimizer.

We now introduce our model. Let ξ be a series

ξ (x) =
∑
p≥1

apx
p, ap ≥ 0, (1.1)
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with radius of convergence r > 1, such that ap > 0 for at least one p ≥ 2. Let HN be a centered
Gaussian process (the Hamiltonian) on the open ball in RN with radius

√
r whose covariance

is given by
E
[
HN(σ)HN(σ′)

]
= Nξ(σ · σ′), |σ|, |σ′| <

√
r. (1.2)

We are mostly interested in the behavior of the Hamiltonian HN restricted to the unit sphere
SN−1 =

{
σ ∈ RN : |σ| = 1

}
.

Note that any covariance function of an isotropic Gaussian random field on the sphere must
depend only on the scalar product σ · σ′, and thus take the form ξ(σ · σ′) for some function ξ.
By Schoenberg’s theorem [Sch42], the only such ξ that give well-defined covariances on SN−1

for all N are those of the form (1.1). They thus represent a very general class of covariances
of isotropic random Gaussian fields on the sphere. If ξ (x) = apx

p for some p ≥ 2, then we call
HN a pure p-spin Hamiltonian.

For h ≥ 0 and a deterministic sequence uN ∈ SN−1, we consider the Hamiltonian with
external field huN

Hh
N(σ) = HN(σ) +NhuN · σ. (1.3)

A critical point of Hh
N on SN−1 is a σ ∈ SN−1 such that

∇spH
h
N(σ) = 0,

where ∇sp denotes the gradient in the spherical metric (that is the standard gradient projected
on the tangent space of SN−1 at σ). We further use ∂rHh

N(σ) to denote the radial derivative of
Hh
N at σ, ∇2

spH
h
N(σ) the spherical Hessian, and λmax(∇2

spH
h
N(σ)) its largest eigenvalue. Using

the shorthand notation ξ = ξ(1), ξ′ = ξ′(1), ξ′′ = ξ′′(1), our main result shows that the function
Hh
N (σ) trivializes for h2 > ξ′′− ξ′ and gives formulas describing the properties of this function

at its unique maximizer.

Theorem 1.1. If h2 > ξ′′ − ξ′, then

lim
N→∞

P
(

The only critical points of Hh
N are

one maximum and one minimum

)
= 1 (1.4)

and, letting σ∗ be the global maximum of Hh
N

lim
N→∞

1

N
Hh
N(σ∗) =

√
ξ′ + h2, (1.5)

lim
N→∞

σ∗ · uN =
h√

ξ′ + h2
, (1.6)

lim
N→∞

1

N
∂rH

h
N(σ∗) =

ξ′ + ξ′′ + h2√
ξ′ + h2

, (1.7)

lim
N→∞

λmax(∇2
spH

h
N(σ∗)) = 2

√
ξ′′ − ξ′ + ξ′′ + h2√

ξ′ + h2
, (1.8)

where the limits are in probability.

If ξ′′ < ξ′, then the conclusions hold for any h ≥ 0. On the other hand, if ξ′′ ≥ ξ′, then the
condition h2 > ξ′′ − ξ′ is equivalent to h > hc, where we define the threshold hc by

hc =
√

ξ′′ − ξ′. (1.9)
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Note that ξ′′ ≥ ξ′ holds in particular if a1 = 0, that is, if there is no random external field (see
the discussion below Theorem 1.2).

The main step in proving Theorem 1.1 is a precise control of the asymptotic behaviour of
the expected number of critical points of Hh

N using the Kac-Rice formula, stated here as our
second main result.

Theorem 1.2. Let NN be the number of critical points of Hh
N ,

NN =
∣∣{σ ∈ SN−1 : ∇spH

h
N(σ) = 0}

∣∣. (1.10)

(i) If h2 > ξ′′ − ξ′, then
lim
N→∞

E [NN ] = 2. (1.11)

(ii) If h2 ≤ ξ′′ − ξ′ (in the case ξ′′ ≥ ξ′), then

lim
N→∞

1

N
lnE[NN ] =


1
2
(h

2

h2c
− 1− ln h2

h2c
), if h/hc ∈

(√
ξ′

ξ′′
, 1
]
,

1
2

ln ξ′′

ξ′
− h2

2ξ′
, if h/hc ∈

[
0,
√

ξ′

ξ′′

]
.

(1.12)

Observe that the triviality (1.4) directly follows from (1.11) and Markov’s inequality, since
any differentiable function on the sphere has at least two critical points, one global maximum
and one global minimum. The result (1.12) also gives the exponential rate of the expectation
for h < hc.

Note also that if ξ′′ ≥ ξ′ (cf. (1.9)), then the right-hand side of (1.8) equals 2
√
ξ′′− 2ξ′′+h2−h2c√

ξ′′+h2−h2c
and thus tends to zero as h ↓ hc, showing that the unique local maximum becomes increasingly
flat as the external field approaches the critical value hc from above. Furthermore since HN

and −HN are identical in law, statements similar to (1.5)–(1.8) for the unique minimum follow,
with the obvious change of sign.

When a1 = 0, our claim (1.5) on the energy of the unique global maximum coincides with
(13) of Proposition 1 in [CS17]. Our paper thus provides an alternative proof of this result. The
method of [CS17] is very different, in that it uses the Parisi formula to derive a general formula
for limN→∞

1
N
Hh
N (σ∗) (known as the ground state energy), which is shown to simplify to the

right-hand side of (1.5) when h > hc. Using this and a further approach the mathematically
non-rigorous work [Ros+19] argues for triviality precisely when h > hc in the special case of
pure p-spin Hamiltonians with deterministic external field.

Fyodorov [Fyo15] proves (1.11) (and thus (1.4)) for pure p-spin Hamiltonians with random
Gaussian external field, that is for Hamiltonians of the form H̃N(σ) = HN(σ)+h(UN ·σ), where
HN is as above, and where UN is a centered Gaussian random vector in RN whose covariance
is N times the identity matrix, and which is independent of HN . The covariance of H̃N is
then E[H̃N(σ)H̃N(σ′)] = Nξ̃(σ · σ′) for ξ̃(x) = h2x + ξ(x). Thus, since we allow a1 > 0 in
(1.2), our results also cover the case of random external field, or a combination of random and
deterministic external fields.

From the first mathematically rigorous uses of the Kac-Rice formula for spin glass Hamil-
tonians in [Fyo04; FN12; Fyo15; ABČ13] it has become a widely used tool in this context. The
work [Sub17a] used it to compute the second moment of NN to obtain concentration of NN
for h = 0 and HN a pure p-spin Hamiltonian (and in [BSZ20] for perturbations thereof). The
work [FMM21] used it to count so called TAP solutions, and [Sub17b; BSZ20] to compute free
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energies and study the Gibbs measure of certain Hamiltonians. Furthermore [Ben+19] used
the Kac-Rice formula for the similar problem of studying the complexity (number of critical
points at exponential scale) of pure p-spin Hamiltonians with a deterministic term of polynomial
degree p.

In our proof, we follow Fyodorov [Fyo15] in using the Kac-Rice formula to compute E[NN ]
and exploiting that the expected determinant of a shifted GOE matrix can be computed very
precisely (see Lemmas 2.1, 2.2). Our proof diverges from [Fyo15] in that all our computations are
for general ξ rather than the pure p-spin covariance function ξ(x) = xp, and, more importantly,
because when considering a deterministic external field one obtains from the Kac-Rice formula
an integral over two rather than one variables. To find the asymptotic of the integral one must
thus find explicit formulas for the maximizers of a function of R2 rather than as in [Fyo15] for
a function of R (see Section 4). The extra variable corresponds to the inner product with the
deterministic external field, whereas with random external field the only variable of integration
corresponds to the radial derivative.

Though we do not prove it, there is a good reason to believe that the threshold hc is sharp
for the triviality (1.4), (1.11): Indeed [CS17] shows that this is precisely the threshold for the
minimizer of their Parisi formula for the ground state to be “replica symmetric”, and replica
calculations of [Ros+19] demonstrate using physics methods that for h < hc the quenched
complexity limN→∞

1
N

lnNN is positive in the special case of a pure p-spin Hamiltonian (but
smaller than the right-hand side of (1.12), i.e. the “quenched” and “annealed” averages do not
coincide in the physics terminology).

Our work is a step on the way towards rigorously determining the complexity of critical
points for mixed p-spin Hamiltonians in general. It would furthermore be interesting to inves-
tigate the “physical” consequences for the Gibbs measure of the triviality of the Hamiltonian.

Structure of paper In Section 2, we introduce notation and recall some results on random
matrices. In Section 3, we derive an exact and essentially explicit formula for the mean number
of critical points of Hh

N on the sphere. To this end, we employ the Kac-Rice formula which in
our setting reads (see e.g. [AT07, (12.1.4)])

E [NN ] =

∫
SN−1

E
[∣∣det∇2Hh

N(σ)
∣∣ ∣∣∣∇Hh

N(σ) = 0
]
f∇spHh

N (σ)(0) dσ, (1.13)

where dσ is the area element on SN−1 and where f∇spHh
N (σ) is the density of ∇spH

h
N(σ). We

also use a slightly more general version restricting energy, radial derivative x, and overlap γ,
with the external field to an arbitrary measurable set. The upshot is an estimate of the form

E [NN ] = eo(N)

∫
[−1,1]×R

exp (NF (x, γ)) dγ dx,

where F is defined in (4.1) and a precise asymptotic for the term eo(N) is also provided. From
this it is clear that the asymptotic behaviour of E[NN ] is closely connected to the maximizers
of F . Section 4 is devoted to the explicit computation of these maximizers via the solution of
the critical point equations for F . We will see that their behavior is different for h < hc and
h > hc, see Proposition 4.2. Knowledge of the maximizers will allow us to verify (1.12), as well
as a weaker version of (1.11), namely that for h > hc

lim
N→∞

N−1 lnE [NN ] = 0.
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A detailed analysis of the subexponential contributions is conducted in Section 5 culminating
in the proof of (1.11). In Section 6, the claims (1.5)–(1.8) are proved using that any but the
given energy, radial derivative and overlap with external field have exponentially decaying mean
number of critical points, which implies the claims by Markov’s inequality.

2 Preliminaries
In this section we introduce the notation that is used throughout the paper and state few
important results used in the proof of Theorems 1.1-1.2.

When considering the Hamiltonian and its derivatives at a given σ ∈ SN−1, we always
express them in the orthonormal basis (ei(σ))Ni=1 of RN which is fixed so that eN(σ) = σ and
the vector uN lies in the plane spanned by e1(σ) and eN(σ). Then (ei(σ))N−1

i=1 is a basis for
the tangent space of SN−1 at σ. For a sufficiently smooth function f : RN → R, we use ∂if(σ)
to denote the standard derivative of f in the direction ei(σ) at the point σ, ∇f = (∂if)Ni=1

stands for its Euclidean gradient, and ∇2f(σ) = (∂2
ijf(σ))Ni,j=1 for its Euclidean Hessian. In

this basis, ∂Nf(σ) coincides with the radial derivative ∂rf(σ), the spherical gradient ∇spf(σ)
is the restriction of the usual gradient to the first N − 1 coordinates,

∇spf(σ) = (∂if(σ))N−1
i=1 , (2.1)

and the spherical Hessian satisfies

∇2
spf = ∇2f

∣∣
sp
− ∂rf IN−1 = (∂2

ijf − δij∂rf)N−1
i,j=1, (2.2)

where IN stands for the N×N identity matrix, ∇2f |sp is the top left (N−1)×(N−1) submatrix
of ∇2f and δij is the Kronecker symbol.

If ξ(x) has radius of convergence r greater than one, then HN(σ) is almost surely a smooth
function on the open ball {σ : |σ| <

√
r} ⊂ RN , so we may speak of its Euclidean and spherical

derivatives.
We write an ∼ bn if an/bn → 1 as n → ∞. For a random variable X, we use fX to denote

its density, if it exists.
For the evaluation of the determinant appearing in the Kac-Rice formula, we will need few

facts about GOE random matrices. Given a > 0 and N ∈ N, we use GOEN(a) to denote a
N × N symmetric random matrix whose entries Aij, 1 ≤ i ≤ j ≤ N , are independent normal
random variables with mean 0 and variance

EA2
ij =

(1 + δij) a

2
. (2.3)

We write λN,a1 ≥ · · · ≥ λN,aN for the ordered eigenvalues of GOEN(a), and define the averaged
empirical spectral measure by

µN,a(A) = N−1

N∑
i=1

P[λN,ai ∈ A], A ∈ B(R). (2.4)

The density of µN,a is denoted by ρN,a, and we introduce ρN := ρN,N−1 as a convenient abbrevi-
ation. It is well-known that ρN(x) converges to 1

2π

√
2− x21|x|≤

√
2 as N →∞, see e.g. [Meh04,

(7.2.31)].
We will need the following identity for the determinant of a shifted GOEN−1(N−1).
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Lemma 2.1. For any x ∈ R,

E
[∣∣ det(xIN−1 + GOEN−1(N−1))

∣∣] =
√

2N−(N−2)/2 Γ

(
N

2

)
eNx

2/2ρN(x). (2.5)

We also need precise estimates for ρN(x).

Lemma 2.2. (i) For any δ > 0,

ρN(x) =
exp (N Φ(x))

2
√
π N (x2 − 2)

1
4 (|x|+

√
x2 − 2)

1
2

+o(1)
(2.6)

with the error term o(1) converging to zero uniformly for |x| >
√

2(1 + δ), and where

Φ(x) =

(
−|x|
√
x2 − 2

2
+ ln

{
|x|+

√
x2 − 2√
2

})
1{|x|≥

√
2} ≤ 0. (2.7)

(ii) For any ε > 0 and large enough N , for all x ∈ R

eNΦ(x)(1+ε)−Nε ≤ ρN(x) ≤ eNΦ(x)(1−ε)+Nε. (2.8)

Remark 2.3. Lemma 2.1 is (38) from [Fyo15]. For Lemma 2.2(i) with pointwise convergence see
[Fyo15, (49)] and [For12, (3.11)]. We give self-contained proofs of both lemmas in Appendix A.

We record the following easy estimate for Φ(x) that follows directly from (2.7), showing
that it grows quadratically:

− x2

2
≤ Φ(x) ≤ −x

2

2
+ c+ c′x for all x ∈ R, for some constants c, c′. (2.9)

3 Exact formula for the mean number of critical points
In this section, we make the first step on the way to prove Theorems 1.1-1.2. The main result is
Proposition 3.1 giving a precise formula for the number of critical points with certain properties.
The additional properties will be useful later to show (1.5)–(1.8) characterizing the maximizer
of Hh

N .
To state this proposition we need several definitions. Given measurable sets Γ ⊂ [−1, 1] and

R,E ⊂ R, we define

NN(Γ, R,E)

=
∣∣{σ ∈ SN−1 : ∇spH

h
N(σ) = 0, σ · uN ∈ Γ, N−1∂rHN(σ) ∈ R, N−1Hh

N(σ) ∈ E}
∣∣ (3.1)

(note that the radial derivative ∂rHN(σ) is indeed of the Hamiltonian HN(σ) without external
field, and not of Hh

N(σ)). For γ ∈ (−1, 1), x ∈ R, we set

G(x, γ) =
1

2
ln (1− γ2) +

h2γ2

2ξ′
− x2

2(ξ′ + ξ′′)
+

(x+ hγ)2

4ξ′′
, (3.2)

px,γ(E) = P
(
N−1Hh

N(σ) ∈ E
∣∣N−1∂rHN(σ) = x

)
, (3.3)

where in the last formula σ ∈ SN−1 is such that σ ·uN = γ (it is easy to see from the symmetry
of the Hamiltonian that the right-hand side depends on σ only through γ). Finally, we recall
the definition of ρN from below (2.4).

6



Proposition 3.1. For every N ∈ N, measurable Γ ⊂ [−1, 1] and R,E ⊂ R,

E
[
NN(Γ, R,E)

]
= e

−Nh
2

2ξ′

(
ξ′′

ξ′

)N−1
2 2N√

π(ξ′ + ξ′′)

Γ(N
2

)

Γ(N−1
2

)

∫
Γ

∫
R

eNG(x,γ)

(1− γ2)3/2
ρN

(
x+ hγ√

2ξ′′

)
px,γ(E) dx dγ.

Proof. By the Kac-Rice formula (see, e.g. [AT07, (12.1.4)])

E
[
NN(Γ, R,E)

]
=

∫
SN−1

E
[
| det∇2

spH
h
N(σ)|1EE,R

∣∣∇spH
h
N(σ) = 0

]
1Γ(γ) f∇spHh

N (σ)(0) dσ, (3.4)

where we set
γ = γ(σ) = σ · uN , (3.5)

and
EE,R = {N−1Hh

N(σ) ∈ E, N−1∂rHN(σ) ∈ R}. (3.6)

Using (1.3), formulas (2.1), (2.2) and the notation introduced above them, it follows that

∇spH
h
N(σ) =

(
∂iHN(σ) + hNuN · ei(σ)

)N−1

i=1
, (3.7)

∇2
spH

h
N(σ) = ∇2Hh

N(σ)
∣∣
sp
− ∂rHh

N(σ) IN−1 = ∇2HN(σ)
∣∣
sp
−
(
∂rHN(σ) +Nhγ

)
IN−1. (3.8)

The vector that lists all entries of HN(σ),∇HN(σ) and ∇2HN(σ) is a centred multivariate
Gaussian vector. Its covariance can be computed from (1.2). This computation is standard in
the context of the critical point complexity for spherical Hamiltonians (see [AB13, Lemma 1]
and [BSZ20, Appendix A]); we recall these results in Lemma B.1 in Appendix B. Here we only
need the following claims that are a direct consequence of this lemma.

Lemma 3.2. For every σ ∈ SN−1

(a) ∇spH(σ) is independent of
(
HN(σ), ∂rHN(σ),∇2HN(σ)|sp

)
, and ∇2HN(σ)|sp is indepen-

dent of
(
HN(σ), ∂rHN(σ)

)
.

(b) ∂iHN(σ), i = 1, . . . , N − 1, are i.i.d. centred normal random variables with variance ξ′N .

(c) ∇2HN(σ)|sp has the law of GOEN−1(2ξ′′N)
d
= N

√
2ξ′′GOEN−1(N−1).

(d) ∂rHN(σ) is a centred normal random variable with variance (ξ′ + ξ′′)N .

We now evaluate the terms appearing on the right-hand side of the Kac-Rice formula (3.4).

Lemma 3.3. For every σ ∈ SN−1, using the notation (3.5),

f∇spHh
N (σ)(0) = C1(N) exp

(
Nh2γ2

2ξ′

)
,

where
C1(N) = (2π ξ′N)−

N−1
2 exp

(
−Nh

2

2ξ′

)
.
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Proof. By (3.7) and Lemma 3.2(b), ∇spH
h
N(σ) is a Gaussian vector whose components are

independent and whose i-th component has mean hNuN · ei(σ) and variance ξ′N . Therefore,

f∇spHh
N (σ)(0) = (2π ξ′N)−

N−1
2 exp

(
−Nh

2

2ξ′

N−1∑
i=1

(uN · ei(σ))2

)
.

Using that 1 = |uN |2 =
∑N

i=1(uN ·ei(σ))2 and recalling that eN(σ) = σ completes the proof.

Lemma 3.4. For every σ ∈ SN−1, every Γ, R, E as in Proposition 3.1, and h ≥ 0,

E
[
|det∇2

spH
h
N(σ)|1EE,R

∣∣∇spH
h
N(σ) = 0

]
= C2(N)

∫
R

exp

(
N

(
− x2

2(ξ′ + ξ′′)
+

(x+ hγ)2

4ξ′′

))
ρN

(
x+ hγ√

2ξ′′

)
px,γ(E) dx,

where

C2(N) =
(2ξ′′)

N−1
2 N

N+1
2 Γ(N/2)√

π(ξ′ + ξ′′)
.

Proof. Using (3.7) and (3.8) together with Lemma 3.2(a), we see that ∇2
spH

h
N(σ) and EE,R are

independent of ∇spH
h
N(σ), and therefore we can remove the conditioning on ∇spH

h
N(σ) = 0.

By (3.8) and Lemma 3.2(a,c), we then obtain

E
[∣∣ det∇2

spH
h
N(σ)

∣∣1EE,R] = E
[∣∣ det

(
∇2HN(σ)|sp − ∂rHh

N(σ)IN−1

) ∣∣1EE,R]
= E

[∣∣∣ det
(
N
√

2ξ′′GOEN−1(N−1)− ∂rHh
N(σ)IN−1

) ∣∣∣1EE,R]
= (2ξ′′N2)

N−1
2 E

[∣∣∣∣ det
(

GOEN−1(N−1)−
(∂rHN(σ) +Nhγ

N
√

2ξ′′

)
IN−1

)∣∣∣∣1EE,R],
where the matrix GOEN−1(N−1) is independent of ∂rHN(σ) and HN(σ). Recalling the distri-
bution of ∂rHN(σ) from Lemma 3.2(d), using the notation from (3.3) to write the expectation
as an integral over the value x of N−1∂rHN(σ), this becomes

(2ξ′′N2)
N−1

2

√
N

2π(ξ′ + ξ′′)

∫
R

exp

(
− Nx2

2(ξ′ + ξ′′)

)
× E

[∣∣∣∣ det

(
GOEN−1(N−1)− x+ hγ√

2ξ′′
IN−1

)∣∣∣∣]px,γ(E) dx.

Lemma 2.1 and ρN(x) = ρN(−x) then yield the claim.

Going back to (3.4), using Lemmas 3.3 and 3.4, we obtain

E
[
NN(Γ, R,E)

]
= C1(N)C2(N)

∫
SN−1

∫
R

1Γ(γ) exp

(
Nh2γ2

2ξ′

)
× exp

(
N

(
− x2

2(ξ′ + ξ′′)
+

(x+ hγ)2

4ξ′′

))
ρN

(
x+ hγ√

2ξ′′

)
px,γ(E) dx dσ.

(3.9)
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We proceed with the evaluation of the double integral on the right-hand side of (3.9) which we
denote by IN(Γ, R,E). Observing that the integrand depends on σ only through γ, we obtain

IN(Γ, R,E) =

∫
Γ

∫
R

Vol(
√

1− γ2SN−2)√
1− γ2

exp

(
N

(
h2γ2

2ξ′
− x2

2(ξ′ + ξ′′)
+

(x+ hγ)2

4ξ′′

))
× ρN

(
x+ hγ√

2ξ′′

)
px,γ(E) dx dγ.

(3.10)

Using that Vol(rSN−2) = 2rN−2π(N−1)/2/Γ(N−1
2

) and recalling the notation from (3.2), we get

IN(Γ, R,E) =
2π

N−1
2

Γ(N−1
2

)

∫
Γ

∫
R

(1− γ2)
N−3

2 exp

(
N

(
h2γ2

2ξ′
− x2

2(ξ′ + ξ′′)
+

(x+ hγ)2

4ξ′′

))
× ρN

(
x+ hγ√

2ξ′′

)
px,γ(E) dx dγ

=
2π

N−1
2

Γ(N−1
2

)

∫
Γ

∫
R

(1− γ2)−
3
2 eNG(x,γ)ρN

(
x+ hγ√

2ξ′′

)
px,γ(E) dx dγ.

Inserting this into (3.9) and simplifying the prefactors yields the claim of Proposition 3.1.

4 Optimising the integrand
The asymptotic behaviour of E[NN(Γ, R,E)] will be determined using the Laplace method. To
this end, we need to control the exponential growth rate of the integrand in Proposition 3.1. We
will discuss the rate of px,γ(E) in Section 6 and set for this section E = R, so that px,γ(E) = 1.

Let

F (x, γ) = G(x, γ) + Φ

(
x+ γh√

2ξ′′

)
=

1

2
ln (1− γ2) +

h2γ2

2ξ′
− x2

2(ξ′ + ξ′′)
+

(x+ hγ)2

4ξ′′
+ Φ

(
x+ hγ√

2ξ′′

)
,

(4.1)

with Φ as in (2.7). The next lemma gives an estimate of the integrand in Proposition 3.1 in
terms of F . Before stating and proving it, note that (2.9) implies the following uniform bound
for F (x, γ):

F (x, γ) ≤ 1

2
ln(1− γ2) + c1 − c2x

2 for some c1, c2 (depending on h, ξ) and all x, γ. (4.2)

Lemma 4.1. It holds that

(1− γ2)−
3
2 eNG(x,γ)ρN

(
x+ hγ√

2ξ′′

)
= eNF (x,γ)(1+o(1))+o(N), (4.3)

where the error terms may depend on h, ξ, but are uniform in (x, γ) ∈ R× (−1, 1).
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Proof. Using Lemma 2.2(ii) one obtains that the logarithm of the left-hand side equals

NF (x, γ) + o

(
N

(
| ln(1− γ2)|+

∣∣∣Φ( x+hγ√
2ξ′′

)∣∣∣+ 1

))
.

On any compact subset of R× (−1, 1) the error term can be bounded by o(N). On the other
hand for large enough x the inequalities (2.9) and (4.2) imply that the error term can be
bounded by o(N |F (x, γ)|).

In order to determine the maximum of F , it is convenient to make a number of changes of
variables. We eliminate x by setting

η =
x+ hγ√

2ξ′′
, (4.4)

and introduce
h̃ =

h√
2ξ′′
∈ [0,∞) and a =

ξ′

ξ′′
∈ (0,∞). (4.5)

We then set

F̃ (η, γ) = F
(
η
√

2ξ′′ − hγ, γ
)

=
1

2
ln
(
1− γ2

)
+
h̃2γ2

a
− (η − h̃γ)2

1 + a
+
η2

2
+ Φ(η). (4.6)

Note that the maximum values of F and F̃ over R×(−1, 1) coincide and (x, γ) is a maximizer
of F if and only if (η, γ) (with η as in (4.4)) is a maximizer of F̃ .

Proposition 4.2. (i) If h2 > ξ′′ − ξ′ (i.e. if h > hc or a > 1), then the unique maximizers
of F and F̃ are ±(x∗, γ∗) and ±(η∗, γ∗) respectively, where

γ∗ =
h√

ξ′ + h2
, η∗ =

ξ′ + ξ′′ + h2√
2ξ′′(ξ′ + h2)

, x∗ =
ξ′ + ξ′′√
ξ′ + h2

. (4.7)

The common value of their maxima is then

F (x∗, γ∗) = F̃ (η∗, γ∗) =
h2

2ξ′
− 1

2
ln

ξ′′

ξ′
. (4.8)

(ii) If a < 1 and h ∈ (hc
√
a, hc], then the unique maximizers of F and F̃ are ±(x0, γ0) and

±(η0, γ0) respectively, where

γ0 =
1

h

√
ξ′′h2 − ξ′(ξ′′ − ξ′)

ξ′′
, η0 =

hγ0

√
2ξ′′

ξ′′ − ξ′
, x0 =

hγ0(ξ′ + ξ′′)

ξ′′ − ξ′
. (4.9)

The common value of their maxima is then

F (x0, γ0) = F̃ (η0, γ0) =
1

2
(H − 1− lnH), (4.10)

where
H =

ξ′′h2

ξ′(ξ′′ − ξ′)
=

ξ′′

ξ′
h2

h2
c

. (4.11)
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(iii) If a < 1 and h ≤ hc
√
a, then (0, 0) is the unique maximizer of F and F̃ and F (0, 0) =

F̃ (0, 0) = 0.

(iv) If a = 1 and h = 0, then F (x, γ) = F̃ (η, γ) = 1
2

ln (1− γ2) + Φ(η) with η = x√
2ξ′′

and the

maximum of F over R× (−1, 1) is 0.

Proof. Note that from (2.7)

Φ′(η) = −
√
η2 − 2 sgn(η)1|η|≥

√
2, (4.12)

so that Φ is a differentiable function (including at ±
√

2). Thus F̃ is differentiable as well. In
addition, from (4.2) it follows that F̃ (η, γ) tends to −∞ as |γ| → 1 or |η| → ∞. Therefore, a
maximizer of F̃ must exist and be a critical point. Moreover, for every η ≥ 0 and γ ≥ 0,

F̃ (η, γ) = F̃ (−η,−γ) ≥ F̃ (−η, γ) = F̃ (η,−γ), (4.13)

where equality holds only when η = γ = 0. Hence, to look for a maximizer, we only need to
consider the critical points in [0,∞)× [0, 1). Thus we assume η, γ ≥ 0 in the remainder of the
proof. Taking the derivatives in η and γ, and using (4.12) we obtain

∂ηF̃ (η, γ) = Aγ −Bη −
√
η2 − 21|η|≥

√
2,

∂γF̃ (η, γ) = Cγ + Aη − γ

1− γ2
,

with

A =
2h̃

1 + a
, B =

1− a
1 + a

and C =
2h̃2

(1 + a)a
. (4.14)

Hence, the critical points of F̃ in [0,∞)× (0, 1) solve the system

Aγ −Bη =
√
η2 − 21|η|≥

√
2,

Cγ + Aη =
γ

1− γ2
.

(4.15)

Solutions of this system are illustrated on Figure 1. The next two lemmas give the solutions
in various regimes. For the first one recall the definitions of γ∗, η∗ from (4.7).

Lemma 4.3. If h2 ≥ ξ′′ − ξ′ (i.e. a < 1 or h ≥ hc) then the point (η∗, γ∗) is the only solution
to the system (4.15) (and thus the only critical point of F̃ ) in [

√
2,∞)× [0, 1).

If h2 < ξ′′ − ξ′ (i.e. a > 1 and h < hc) there is no solution to (4.15) in [
√

2,∞)× [0, 1).

Proof. We first consider the case h = 0. Then the calculation reduces to the one for purely
random external field carried out in [Fyo15]. Indeed A = C = 0, and the second equation of
(4.15) implies γ = 0 = γ∗. By the first equation, η =

√
2/(1−B2) and since

1−B2 =
4a

(1 + a)2
, (4.16)

we have
√

2/(1−B2) = η∗. Therefore, (η∗, γ∗) is the unique solution of (4.15), and the proof
is completed in this case.
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Figure 1: Points (γ, η) solving the first (blue line) and the second (yellow line) equation of the
system (4.15) for pure 3-spin Hamiltonian.

From now on we assume h > 0. For η ≥
√

2, the first equation of (4.15) implies that
η2 − 2 = (Bη − Aγ)2, which yields the equation

(1−B2)η2 + 2ABηγ − (2 + A2γ2) = 0.

As B ∈ (−1, 1) this is a quadratic equation for η with two solutions, only one of which is
non-negative since 2(1−B2) + A2γ2 > A2B2γ2, namely

η =
−ABγ +

√
2(1−B2) + A2γ2

1−B2
.

We can rewrite this as
η =

1

R

(
− B

A
γ +

1

A

√
2R + γ2

)
, (4.17)

with
R =

1−B2

A2

(4.16),(4.14)
=

a

h̃2
=

2ξ′

h2
. (4.18)

Plugging this into the second equation of (4.15), we get

Cγ +
A

R

(
−B
A
γ +

1

A

√
2R + γ2

)
=

γ

1− γ2
.

Observing that γ = 0 is not a solution to this equation, after dividing through by γ and some
simplifications, we obtain

CR−B +

√
2R

γ2
+ 1 =

R

1− γ2
. (4.19)

By (4.14), CR−B = 1. Hence, this is equivalent to√
1 +

2R

γ2
=

R

1− γ2
− 1. (4.20)
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If one squares both sides to eliminate the square root and multiplies out by γ2(1 − γ2)2 to
remove all fractions, then one gets what is a priori a third degree equation in γ2. However the
third and second degrees cancel yielding the equation 2R(1− 2γ2) = R2γ2 − 2Rγ2, which has
a single non-negative solution

γ =

√
2

R + 2

(4.18)
=

h√
ξ′ + h2

(4.7)
= γ∗. (4.21)

Plugging this into (4.17) and using that
√

2R + γ2
∗ = (h2 +2ξ′)/h we obtain that η must satisfy

η =
1√

ξ′ + h2

1

ARh

(
−Bh2 + h2 + 2ξ′

)
=

h2 + ξ′ + ξ′′√
2ξ′′(ξ′ + h2)

(4.7)
= η∗. (4.22)

Hence the only possible solution of (4.15) in [
√

2,∞)× [0, 1) is (η∗, γ∗).
To check that (η∗, γ∗) is indeed a solution (since we squared the equation (4.20) we must

verify this), we firstly note that by the definition of η∗

η2
∗ − 2 =

(ξ′ + h2 − ξ′′)2

2ξ′′(ξ′ + h2)
, (4.23)

so that obviously η∗ ≥ 2. Secondly, by plugging η = η∗, γ = γ∗ into the second equation of
(4.15) we see that these always solve the equation, since

Cγ∗ + Aη∗ =
2h̃

(1 + a)ξ′
√

2ξ′′(ξ′ + h2)
(ξ′′h2 + ξ′(ξ′′ + ξ′ + h2)), (4.24)

where the last parenthesis factors as (ξ′ + h2)(ξ′ + ξ′′) = ξ′′(ξ′ + h2)(1 + a), giving

Cγ∗ + Aη∗ =
h̃
√

2ξ′′
√

ξ′ + h2

ξ′
=
h
√
ξ′ + h2

ξ′
=

γ∗
1− γ2

∗
. (4.25)

Lastly, the left-hand side of the first equation of (4.15) equals

Aγ∗ −Bη∗ =
2h2ξ′′ − (ξ′′ − ξ′)(ξ′ + ξ′′ + h2)

(ξ′ + ξ′′)
√

2ξ′′(ξ′ + h2)

=
2ξ′′h2 − h2(ξ′′ − ξ′)− (ξ′′ − ξ′)(ξ′ + ξ′′)√

2ξ′′(ξ′ + h2)(ξ′ + ξ′′)

=
(h2 + ξ′ − ξ′′)(ξ′ + ξ′′)√

2ξ′′(ξ′ + h2)(ξ′ + ξ′′)
=

h2 + ξ′ − ξ′′√
2ξ′′(ξ′ + h2)

.

The right-hand side of the first equation of (4.15) is
√

(ξ′+h2−ξ′′)2
2ξ′′(ξ′+h2)

by (4.23), which equals
the last expression in the above display as long as h2 ≥ ξ′′ − ξ′.

We now inspect critical points with η ∈ [0,
√

2]. Recall the definition of η0, γ0 from Propo-
sition 4.2.
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Lemma 4.4. F̃ has at most two critical points in [0,
√

2]× [0, 1):
If a < 1 and h ≤

√
ahc or if h2 > ξ′′ − ξ′ (i.e. a > 1 or h > hc) then the point (0, 0) is the

only solution to (4.15) in [0,
√

2]× [0, 1).
If a < 1 and h ∈ (hc

√
a, hc], then the points (0, 0) and (η0, γ0) are the only solutions to

(4.15) in [0,
√

2]× [0, 1).

Proof. As claimed γ = 0, η = 0 is always a solution to (4.15). In the remainder of the proof we
thus seek to determine when there are other non-negative solutions.

If γ = 0, then η = 0 is the only solution of (4.15) in [0,
√

2), and we can thus assume that
γ > 0.

We first consider the case a = 1 (that is ξ′′ − ξ′ = 0) and h > 0. Then B = 0 and A > 0,
and the first equation of (4.15) leads to γ = 0, showing that (0, 0) is the only solution and
completing the proof in this special case.

From now on we can assume a 6= 1, and thus B 6= 0. Since we consider η ∈ [0,
√

2] only, the
first equation in (4.15) is linear and implies η = A

B
γ. If a > 1, then A > 0 and B < 0, and thus

there is no solution to (4.15) with γ, η > 0. This completes the proof in the case a > 1. Hence,
we assume a < 1 for the rest of the proof.

Plugging η = A
B
γ into the second equation, we obtain(

C +
A2

B

)
γ =

γ

1− γ2
.

Using the identity C+ A2

B
= h2

(ξ′′−ξ′)a which follows from (4.14), it is easy to see that any non-zero
solution satisfies

γ2 = 1− (ξ′′ − ξ′)a

h2
. (4.26)

If h ≤ hc
√
a then the right-hand side is non-positive, so that there are no non-zero solutions to

(4.26) and thus no further solutions to (4.15). This completes the proof of the case a < 1 and
h ≤ hc

√
a. When h > hc

√
a then (4.26) has unique positive solution√

1− (ξ′′ − ξ′)a

h2

(4.5),(4.9)
= γ0. (4.27)

The matching η, computed from the first equation, is given by η = A
B
γ0 = η0 (see (4.14)), for

η0 as claimed in (4.9). Thus (η0, γ0) is the only possible solution to (4.15) in [0,
√

2] × [0, 1)
other than (0, 0), and is a solution if indeed η0 ≤

√
2.

If h ≤ hc, then η0 ≤
√

2 holds true, because η0 is an increasing functions of h by (4.27)
and (4.9), and η0 =

√
2 for h = hc, by (4.9). This completes the proof of the case a < 1, h ∈

(
√
ahc, hc].
Otherwise, if h > hc, then η0 >

√
2, so (η0, γ0) is not a solution to (4.15). This completes

the proof of the case a < 1, h > hc.

We now have all ingredients to complete the proof of Proposition 4.2.

Proof of (iii). The claim (iii) follows directly from the previous two lemmas, as (0, 0) is the
only critical point for h ≤ hc

√
a, so it must be a maximum.

For claims (i), (ii) we need to evaluate F̃ at the remaining critical points and show that it
is positive there.
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Proof of (i). By Lemmas 4.3, 4.4, and (4.13) the possible maximizers of F̃ are (0, 0) and
±(η∗, γ∗). We need to compute F̃ (η∗, γ∗) and show that it is positive. To this end we write

η∗ =
1√
2

(
z +

1

z

)
for z =

√
ξ′′

h2 + ξ′
. (4.28)

If x = 1√
2
(z + 1

z
) for 0 < z < 1, then the identity

x2

2
+ Φ(x) =

1

2
+
z2

2
− ln z (4.29)

can be proved from the definition (2.7) of Φ by noting that
√
x2 − 2 = 1√

2
(1
z
− z). In addition,

by (4.7),
1

2
ln
(
1− γ2

∗
)

=
1

2
ln

(
ξ′′

ξ′ + h2

)
.

Inserting the last two displays into (4.6) and cancelling the terms containing the logarithm, we
obtain

F̃ (η∗, γ∗) =
h̃2γ2

∗
a
− (η∗ − h̃γ∗)2

1 + a
+

1

2
+

1

2

ξ′′

h2 + ξ′
− 1

2
ln

(
ξ′′

ξ′

)
. (4.30)

Plugging in all definitions (see (4.5) and (4.7)) and using h̃2γ2∗
a

= h4

2ξ′(ξ′+h2)
and (η∗−h̃γ∗)2

1+a
= 1

2
ξ′+ξ′′

ξ′+h2

one verifies (4.8).
Applying the elementary inequality

ln y ≤ y − 1 for all y > 0 (with equality only if y = 1). (4.31)

with y = ξ′′

ξ′
to (4.8) we get for h2 > ξ′′ − ξ′ that

F̃ (η∗, γ∗) >
ξ′′ − ξ′

2ξ′
− 1

2

(ξ′′
ξ′
− 1
)

= 0 = F̃ (0, 0). (4.32)

Thus ±(η∗, γ∗) are the unique maximizers of F̃ if h2 > ξ′′ − ξ′. This proves claim (i) of the
proposition.

Proof of (ii). By Lemmas 4.3, 4.4 and (4.13), we have that ±(η0, γ0) are the only possible
maximizers of F̃ for h ∈ (hc

√
a, hc). When a < 1 and h = hc, then η∗ = η0 =

√
2, x∗ = x0

and γ∗ = γ0, so this holds also for h = hc. Thus to verify (ii) we must compute F (x0, γ0). To
this end we use that Φ(η0) = 0 since |η0| ≤

√
2. Plugging (4.9) into the (4.6) and using that
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1− γ2
0 = 1

H
we obtain

h̃2γ2
0

a
− (η0 − h̃γ0)2

1 + a
+
η2

0

2

= γ2
0

(
h2

2ξ′′a
− 1

1 + a

(
h
√

2ξ′′

ξ′′ − ξ′
− h√

2ξ′′

)2

+
2h2ξ′′

2(ξ′′ − ξ′)2

)

=

(
1− 1

H

)(
h2

2ξ′
− h2

ξ′′ + ξ′

(
2ξ′′2

(ξ′′ − ξ′)2
− 2

ξ′′

ξ′′ − ξ′
+

1

2

)
+

2h2ξ′′

2(ξ′′ − ξ′)2

)
=

(
1− 1

H

)(
h2

2ξ′
+
h2

2

(ξ′′)
2 − (ξ′)

2

(ξ′′ − ξ′)
2

(ξ′′ + ξ′)

)

=

(
1− 1

H

)(
h2

2ξ′
+

h2

2(ξ′′ − ξ′)

)
=

(
1− 1

H

)
H

2
=
H − 1

2
.

This gives (4.10). As H > 1 for h >
√
ahc and a < 1, we see immediately using (4.31) that

F̃ (η0, γ0) > 0 = F̃ (0, 0). This proves the claim (ii).

Proof of (iv). Substituting ξ′′ = ξ′ and h = 0 into F and F̃ , it is straightforward to check
F (x, γ) = F̃ (η, γ) = 1

2
ln (1− γ2) + Φ(η). By (4.12), Φ(η) ≤ 0 for any η ∈ R. Hence, since

ln (1− γ2) ≤ 0, the maxima of F and F̃ are 0.

This completes the proof of all parts of Proposition 4.2.

Having control over the exponential term we are prepared to finish this section with the
proof of claim (1.12) which gives the annealed complexity in the nontrivial regime.

Proof of Theorem 1.2(ii). By Proposition 3.1 with R = E = R and Γ = [−1, 1],

E[NN ] = exp

(
N

[
− h

2

2ξ′
+

1

2
ln

(
ξ′′

ξ′

)]
+ o(N)

)∫ 1

−1

∫ ∞
−∞

eNG(x,γ)

(1− γ)3/2
ρN

(
x+ hγ√

2ξ′′

)
dx dγ,

which by Lemma 4.1 equals

exp

(
N

[
− h

2

2ξ′
+

1

2
ln

(
ξ′′

ξ′

)]
+ o(N)

)∫ 1

−1

∫ ∞
−∞

eNF (x,γ)(1+o(1)) dx dγ.

Bounding the integral over the complement of a sufficiently large box around the origin
from above using (4.2) gives an upper bound of e−LN for any L. Hence restricting to a bounded
region only causes vanishing multiplicative error and then the Laplace method yields

E [NN ] = exp

(
N

[
1

2
ln

(
ξ′′

ξ′

)
− h2

2ξ′
+ max

γ∈[−1,1],x∈R
F (x, γ)

]
+ o(N)

)
. (4.33)

Applying Proposition 4.2(ii, iii, iv) then implies the claim (1.12).

Note that by the same argument using (4.8) of Proposition 4.2(i) we obtain

lim
N→∞

1

N
lnE [NN ] = 0 if h2 > ξ′′ − ξ′, (4.34)

which is a weaker form of the triviality claimed in (1.11).
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5 Exact asymptotic in the trivial regime
In this section we consider the trivial regime h2 > ξ′′ − ξ′, and conclude the proof of the
asymptotic complexity (1.11).

Proof of Theorem 1.2(i). By Proposition 3.1, using E = R = R and Γ = [−1, 1], we have

E[NN ] = e
−Nh

2

2ξ′

(
ξ′′

ξ′

)N−1
2 2N√

π(ξ′ + ξ′′)

Γ(N
2

)

Γ(N−1
2

)

∫
R

∫
[−1,1]

eNG(x,γ)

(1− γ2)3/2
ρN

(
x+ hγ√

2ξ′′

)
dγ dx.

Following the argument of the proof of Theorem 1.2(ii) and using (4.2) we can bound the integral
outside a sufficiently large box above by e−LN for any L. Hence removing the complement of
a sufficiently large box only causes vanishing error. By Laplace principle we then may further
restrict to any fixed neighborhood [x∗ − ε, x∗ + ε] × [γ∗ − ε, γ∗ + ε] of the maximizers of the
exponential contribution, still causing only vanishing error. Since we assume that h2 > ξ′′− ξ′,
it follows from Proposition 4.2(i) that these maximizers are γ∗ and x∗, and in addition x∗+hγ∗√

2ξ′′
=

η∗ >
√

2 by (4.23). Hence choosing ε > 0 small enough allows the use of Lemma 2.2(i).
Recalling the definition of η from (4.4), we obtain that E[NN ] equals

e
−Nh

2

2ξ′

(
ξ′′

ξ′

)N−1
2 2

√
N

π
√

(ξ′ + ξ′′)

Γ(N
2

)

Γ(N−1
2

)

∫ x∗+ε

x∗−ε

∫ γ∗+ε

γ∗−ε

(1− γ2)−
3
2 eNF (x,γ)

(η2 − 2)
1
4 (|η|+

√
η2 − 2)

1
2

dγ dx+ o(1).

Note that an extra factor 2 arises since the neighborhood of (−γ∗,−x∗) by symmetry has the
same contribution as the neighborhood of (γ∗, x∗). Using the Laplace principle with second
order corrections we obtain that the above is

e
−Nh

2

2ξ′

(
ξ′′

ξ′

)N−1
2 2

√
N

π
√

(ξ′ + ξ′′)

Γ(N
2

)

Γ(N−1
2

)

(1− γ2
∗)
− 3

2 eNF (x∗,γ∗)

(η2
∗ − 2)

1
4 (|η∗|+

√
η2
∗ − 2)

1
2

2π

N
√
| det∇2F (x∗, γ∗)|

+o(1).

Using that Γ(N
2

)/Γ(N−1
2

) ∼
√
N/2 and plugging in the value of F (x∗, γ∗) from (4.8) of Propo-

sition 4.2(i), we benefit from cancellations and obtain

E[NN ] =
2
√

2
√
ξ′(1− γ2

∗)
− 3

2√
ξ′′
√

(ξ′ + ξ′′)(η2
∗ − 2)

1
4 (|η∗|+

√
η2
∗ − 2)

1
2

√
| det∇2F (x∗, γ∗)|

+ o(1). (5.1)

Calculating the second order derivatives of F from (4.1), we obtain:

∂2
xF (x, γ) =

1

2ξ′′

(
ξ′ − ξ′′

ξ′ + ξ′′
+ Φ′′(η)

)
,

∂2
γF (x, γ) = − 1 + γ2

(1− γ2)2
+

h2

2ξ′′

(
1 + 2

ξ′′

ξ′
+ Φ′′(η)

)
=

h2

2ξ′′

(
−2ξ′′(ξ′ + h2)(ξ′ + 2h2)

h2(ξ′)2
+ 1 + 2

ξ′′

ξ′
+ Φ′′(η)

)
, (5.2)

∂x∂γF (x, γ) =
h

2ξ′′
(1 + Φ′′(η)) .

17



We now plug in γ = γ∗ and x = x∗, so that η = η∗ (recall the formulas from (4.7)). Using
Φ′′(η) = − η√

η2−2
for η >

√
2 and

√
η2
∗ − 2 = ξ′+h2−ξ′′√

2ξ′′(ξ′+h2)
(recall (4.23)), one verifies that

Φ′′(η∗) = −ξ′+h2+ξ′′

ξ′+h2−ξ′′ . Using also γ2
∗ = h2

ξ′+h2
and simplifying one obtains

∂2
xF (x∗, γ∗) = − 2ξ′ + h2

(h2 + ξ′ − ξ′′) (ξ′ + ξ′′)
,

∂2
γF (x∗, γ∗) = −(ξ′ + 2h2) (ξ′ + h2)

(ξ′)
2 + h2 h2 − ξ′′

ξ′ (h2 + ξ′ − ξ′′)
,

∂x∂γF (x∗, γ∗) = − h

h2 + ξ′ − ξ′′
.

Using these expressions in the formula for the determinant of a 2 × 2 matrix and extracting
factors h2 + ξ′ − ξ′′, (ξ′)2 and ξ′ + ξ′′ one obtains that det∇2F (x∗, γ∗) equals

1

h2 + ξ′ − ξ′′

(
2ξ′ + h2

ξ′ + ξ′′

(
(ξ′ + 2h2) (ξ′ + h2)

(ξ′)
2 − h2(h2 − ξ′′)

ξ′ (h2 + ξ′ − ξ′′)

)
− h2

h2 + ξ′ − ξ′′

)

=
1

(h2 + ξ′ − ξ′′) (ξ′)
2

(ξ′ + ξ′′)

((
2ξ′ + h2

) (
ξ′ + 2h2

) (
ξ′ + h2

)
− h2 (h2 − ξ′′) ξ′

h2 + ξ′ − ξ′′
(
2ξ′ + h2

)
− h2 (ξ′)

2
(ξ′ + ξ′′)

h2 + ξ′ − ξ′′

)
.

(5.3)

The last two terms equal

h2 (h2 − ξ′′) ξ′

h2 + ξ′ − ξ′′
(
2ξ′ + h2

)
+
h2 (ξ′)

2
(ξ′ + ξ′′)

h2 + ξ′ − ξ′′
=
h2 (h2 − ξ′′) ξ′ (2ξ′ + h2) + h2 (ξ′)

2
(ξ′ + ξ′′)

h2 + ξ′ − ξ′′
.

Remarkably a factor of h2 + ξ′ − ξ′′ can be pulled out of the numerator by writing

h2 (h2 − ξ′′) ξ′ (2ξ′ + h2) + h2 (ξ′)
2

(ξ′ + ξ′′)

= h2 (h2 + ξ′ − ξ′′) ξ′ (2ξ′ + h2)− h2 (ξ′)
2

(2ξ′ + h2) + h2 (ξ′)
2

(ξ′ + ξ′′)

= h2 (h2 + ξ′ − ξ′′) ξ′ (2ξ′ + h2)− h2 (ξ′)
2

(ξ′ + h2 − ξ′′)
= (h2 + ξ′ − ξ′′) (h2 + ξ′)h2ξ′.

(5.4)

Thus the determinant (5.3) becomes

(ξ′ + h2) {(2ξ′ + h2) (ξ′ + 2h2)− h2ξ′}
(h2 + ξ′ − ξ′′) (ξ′)

2
(ξ′ + ξ′′)

. (5.5)

By multiplying out and completing the square the second term of the numerator simplifies to
2(ξ′ + h2)2 and we obtain

det∇2F (x∗, γ∗) =
2 (ξ′ + h2)

3

(h2 + ξ′ − ξ′′) (ξ′)
2

(ξ′ + ξ′′)
. (5.6)

Using (4.7), η∗ = 1√
2
(1
z

+ z) and
√
η2
∗ − 2 = 1√

2
(1
z
− z) with z =

√
ξ′′

ξ′+h2
≤ 1 (recall (4.28)), the

remaining terms simplify to

(1− γ2
∗)
−3/2 = ξ′−3/2 (ξ′ + h2)3/2, (5.7)

1

(η2
∗ − 2)1/4(|η∗|+

√
η2
∗ − 2)1/2

=

√
ξ′′

ξ′ + h2 − ξ′′
. (5.8)
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Plugging (5.6)–(5.8) into (5.1) we obtain E[NN ] ∼ 2, which completes the proof of (1.11).

6 Characterization of maximum
In the final section of this paper we prove the asypmtotic equalities (1.5)–(1.8) describing the
properties of the field at its maximizer. The proofs are based on the following two lemmas.

Lemma 6.1. If there exists p ≥ 2 such that ξ(s) = aps
p, then px,γ(E) = 1E

(
xξ′

ξ′+ξ′′
+ hγ

)
.

Otherwise, for x ∈ R and E ⊂ R,

px,γ(E) =
1√
2πJ

∫
E

exp

(
− N

2J2

(
y −

(
ξ′

ξ′ + ξ′′
x+ hγ

))2)
dy, (6.1)

where J2 = ξ(ξ′+ξ′′)−ξ′2
ξ′+ξ′′

is a positive number.

Proof. Using Lemma B.1,

E∂rHN(σ)2 = N(ξ′ + ξ′′), EHN(σ)2 = Nξ, E∂rHN(σ)HN(σ) = Nξ′. (6.2)

Using standard Gaussian conditioning formulas, this implies that, conditionally on ∂rHN(σ),
HN(σ) is a Gaussian random variable with mean ξ′

ξ′+ξ′′
∂rHN(σ) and variance NJ2. By Jensen’s

inequality we have

ξ′ + ξ′′ =
∑
p≥1

p2ap =

(∑
p≥1

ap

)∑
p≥1 p

2ap∑
p≥1 ap

≥

(∑
p≥1

ap

)(∑
p≥1 pap∑
p≥1 ap

)2

=
(ξ′)2

ξ
,

with equality only if ξ(s) = aps
p for some p ≥ 2. It follows that if ξ takes this form, then

J = 0, and otherwise J > 0. If J = 0, then HN(σ) = ξ′

ξ′+ξ′′
∂rHN(σ) almost surely, and thus

px,γ(E) = 1E( xξ′

ξ′+ξ′′
+ hγ). If J2 > 0, we obtain (6.1) as claimed.

Lemma 6.2. Assume that h2 > ξ′′ − ξ′. Recall x∗ and γ∗ from (4.7) and set y∗ =
√
ξ′ + h2.

Then for all closed sets Γ ⊂ [−1, 1] and R,E ⊂ R with ±(γ∗, x∗, y∗) /∈ Γ × R × E, we have
limN→∞ E[NN(Γ, R,E)] = 0.

Proof. We first assume that ξ(s) is not of the form aps
p. By Proposition 3.1, Lemmas 6.1

and 4.1,

E
[
|NN(Γ, R,E)|

]
= exp

(
N

(
1

2
ln

(
ξ′′

ξ′

)
− h2

2ξ′
+ o(1)

))∫
R

∫
Γ

eNG(x,γ)

(1− γ2)
3
2

ρN

(
x+ hγ√

2ξ′′

)
px,γ(E) dγ dx

≤ exp

(
N

(
1

2
ln

(
ξ′′

ξ′

)
− h2

2ξ′
+ o(1)

))
×
∫
E

∫
R

∫
Γ

exp

(
N

(
F (x, γ)− 1

2J2

(
y −

(
ξ′x

ξ′ + ξ′′
+ hγ

))2

+ o(1)

))
dγ dx dy,

(6.3)

19



By noting that y∗ = ξ′

ξ′+ξ′′
x∗ + hγ∗ and using Proposition 4.2(i), if ± (γ∗, x∗, y∗) /∈ Γ × R × E,

then the maximum of the exponent in the integrand of (6.3) over R× Γ×E is strictly smaller
than F (x∗, γ∗) = −

(
1
2

ln
(

ξ′′

ξ′

)
− h2

2ξ′

)
(recall (4.8)), since R×Γ×E is a closed set. Using (4.2)

we see that the tail of the integral plays no role, and thus E[NN(Γ, R,E)] → 0. The proof in
the case ξ(x) = aps

p is similar and simpler and is left to the reader.

We can now prove claims (1.5)–(1.8) of Theorem 1.1. Recall that this theorem deals with
the trivial regime, that is we assume h2 > ξ′′ − ξ′ for the rest of this section.

Proof of (1.5). Taking ε > 0 and applying Lemma 6.2 with E = {y ∈ R : ||y| − y∗| ≥ ε},
R = R and Γ = [−1, 1] we obtain

E[|{σ ∈ SN−1 : ∇spH
h
N(σ) = 0, ||N−1Hh

N(σ)| − y∗| ≥ ε}|]→ 0.

Moreover, for any σ ∈ SN−1 with σ · uN = 0, one has P(|N−1Hh
N(σ)| > ε)→ 0 as N →∞. As

σ∗ is the global maximum of Hh
N , we thus have N−1Hh

N(σ∗) > −ε with probability tending to
one. This implies

lim
N→∞

P(|N−1Hh
N(σ∗)− y∗| > ε) = 0, (6.4)

which proves (1.5).

Proof of (1.6). By a similar argument as in the last proof, taking Γ = [γ∗ − ε, γ∗ + ε]c and
E = [y∗ − ε, y∗ + ε], so that Γ× R× E does not contain ±(γ∗, x∗, y∗),

P(|uN · σ∗ − γ∗| > ε)

≤ P(|uN · σ∗ − γ∗| > ε, |N−1Hh
N(σ∗)− y∗| ≤ ε) + P(|N−1Hh

N(σ∗)− y∗| > ε)

≤ E [NN(Γ,R, E)] + P(|N−1Hh
N(σ∗)− y∗| > ε)→ 0,

where in the last step we have used (6.4) and Lemma 6.2. This proves (1.6).

Proof of (1.7). Repeating the same argument, for R = [x∗ − ε, x∗ + ε]c, E = [y∗ − ε, y∗ + ε]

P(|N−1∂rHN(σ∗)− x∗| > ε)

≤ P(|N−1∂rHN(σ∗)− x∗| > ε, |N−1Hh
N(σ∗)− y∗| ≤ ε) + P(|N−1Hh

N(σ∗)− y∗| > ε)

≤ E [NN([−1, 1], R,E)] + P(|N−1Hh
N(σ∗)− y∗| > ε)→ 0.

(6.5)

This implies that N−1∂rHN(σ∗) → x∗ in probability. Recalling that ∂rHh
N(σ) = ∂rHN(σ) +

N huN · σ and using x∗ + hγ∗ = ξ′+ξ′′+h2√
ξ′+h2

, we obtain (1.7).

To prove (1.8) we need a standard large deviation estimate for the largest eigenvalue of a
GOE random matrix. For a matrix A let λmax(A) denote the largest eigenvalue. Then

for all ε > 0 there is a δ > 0 such that for N large enough
P(|λmax(GOEN(N−1))−

√
2| > ε) ≤ e−δN ,

(6.6)

see e.g. [AGZ10, (2.6.31)]. We also need the following lemma.
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Lemma 6.3. For all δ > 0 it holds for N large enough and
√

2 + δ ≤ x ≤ δ−1 that

E
[∣∣det

(
xIN + GOEN

(
N−1

))∣∣2] ≤ eδNE
[∣∣det

(
xIN + GOEN

(
N−1

))∣∣]2 . (6.7)

Proof. Note that

det
(
xIN + GOEN

(
N−1

))
= exp

(
N

∫
ln |η − λ| dLN(λ)

)
,

where LN = 1
N

∑N
i=1 δλi is the empirical measure of the eigenvalues (λi)

N
i=1 of GOEN(N−1).

We follow [Sub17a, Lemma 16] in approximating ln by a bounded continuous function, and
applying the the large deviation principle for the empirical spectral measure with speed N2.
For κ > 1, define the function

lnκ x =


− lnκ, if x < κ−1,

lnx, if κ−1 ≤ x < κ,

lnκ, if x ≥ κ.

Note that lnx ≤ lnκ x for x ≤ κ. Set |λ|max = max1≤i≤N |λi|. For x ≤ δ−1 we have

E
[∣∣det

(
x IN + GOEN(N−1)

)∣∣2]
= E

[
exp

(
2N

∫
ln |x− λ| dLN(λ)

)]
≤ E

[
exp

(
2N

∫
lnκ |x− λ| dLN(λ)

)
+ exp (2N ln (|x|+ |λ|max))1{|λ|max+|x|>κ}

]
≤ 2E

[
exp

(
2N

∫
lnκ |x− λ| dLN(λ)

)]
,

(6.8)

where the last inequality follows by taking κ large enough and using the estimate P(|λ|max ≥
M) ≤ e−NM

2/9 (see Lemma 6.3 in [BDG01]).
We now apply the large deviation principle (with speed N2) for the empirical spectral

measure, see e.g. [AGZ10, Theorem 2.6.1]. Consider the set

F =

{
µ ∈M1(R) :

∣∣∣∣∣
∫

lnκ |x− λ| dµ(λ)−
∫ √2

−
√

2

(2π)−1 lnκ |x− λ|
√

2− λ2 dλ

∣∣∣∣∣ > δ

8

}
,

where M1(R) stands for set of probability measures on R. Since lnκ(·) is a bounded continuous
function the large deviations principle implies that P(LN /∈ F ) ≤ e−c

′N2 for some c′ > 0.
Therefore the first expectation on the right-hand side of (6.8) can be bounded from above

E
[
exp

(
2N

∫
lnκ |x− λ| dLN(λ)

)]
≤ eNδ/4 exp

(
2N

∫ √2

−
√

2

(2π)−1 lnκ |x− λ|
√

2− λ2 dλ

)
+ e−c

′N2

≤ 2eNδ/4

(
exp

(
N

∫ √2

−
√

2

(2π)−1 ln |x− λ|
√

2− λ2 dλ

))2

.

(6.9)
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The claim then follows since for x >
√

2 + δ and κ large enough

exp

(
N

∫ √2

−
√

2

(2π)−1 lnκ |x− λ|
√

2− λ2 dλ

)

≤ 2E

[
exp

(
N

∫ √2

−
√

2

(2π)−1 lnκ |x− λ|
√

2− λ2 dλ

)
1LN∈F,|λ|max≤

√
2+δ/2

]

≤ 2eNδ/8E
[
exp

(
N

∫
lnκ |x− λ| dLN(λ)

)
1LN∈F,|λ|max≤

√
2+δ/2

]
≤ 2eNδ/8E

[
exp

(
N

∫
ln |x− λ| dLN(λ)

)]
= 2eNδ/8E

[∣∣det
(
xIN + GOEN

(
N−1

))∣∣] ,

(6.10)

where we used the fact that lnκ z ≤ ln z for z ≥ κ−1 as well as P (LN /∈ F ) → 0 and
P
(
|λ|max >

√
2 + δ/2

)
→ 0 (see (6.6)).

Proof of (1.8). Define

MN−1(σ) :=
1

N
√

2ξ′′
∇2Hh

N(σ)|sp,

so that MN−1(σ)
d
= GOEN−1(N−1), by Lemma 3.2(c). Using (2.2),

∇2
spH

h
N(σ) = −∂rHh

N(σ) IN−1 +∇2Hh
N(σ)|sp

= −∂rHh
N(σ) IN−1 +N

√
2ξ′′MN−1(σ).

Recalling (1.7), to prove (1.8) it hence suffices to show that

lim
N→∞

λmax(MN−1(σ∗)) =
√

2, in probability. (6.11)

To show (6.11), we recall η∗ from (4.7), and define

Eε =

{
σ ∈ SN−1 : |λmax(MN−1(σ))−

√
2| > ε,

∣∣∣∣∣∂rHh
N(σ)√

2ξ′′N
− η∗

∣∣∣∣∣ < ε

}
.

By the Kac-Rice formula as in the proof of Proposition 3.1

E
[∣∣{σ ∈ Eε : ∇spH

h
N(σ) = 0

}∣∣]
=

∫
SN−1

f∇spHh
N (σ)(0)E

[∣∣∣det
(
−∂rHh

N(σ) IN−1 +N
√

2ξ′′MN−1(σ)
)∣∣∣1Eε(σ)

]
dσ.

(6.12)

To compute the expectation inside the integral, recall that ∂rHh
N(σ) and MN−1(σ) are inde-
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pendent by Lemma 3.2(a). Hence,

E
[∣∣∣det

(
−∂rHh

N(σ) IN−1 +N
√

2ξ′′MN−1(σ)
)∣∣∣1Eε(σ)

]
= (2ξ′′N2)

N−1
2 E

[∣∣∣∣∣det

(
−∂rH

h
N(σ)

N
√

2ξ′′
IN−1 + MN−1(σ)

)∣∣∣∣∣1Eε(σ)

]

= (2ξ′′N2)
N−1

2

∫ η∗+ε

η∗−ε
E
[
|det (−η IN−1 + MN−1(σ))|1{|λmax(MN−1(σ))−

√
2| > ε}

]
× f ∂rHhN (σ)

N
√

2ξ′′

(η) dη

≤ (2ξ′′N2)
N−1

2

(∫ η∗+ε

η∗−ε
E
[
|det (−ηIN−1 + MN−1(σ))|2

]1/2
f ∂rHhN (σ)

N
√

2ξ′′

(η) dη

)
× P(|λmax(MN−1(σ))−

√
2| > ε)1/2,

(6.13)

where in the last step we used the Cauchy-Schwarz inequality.
Using (6.6) we have for some δ that

P(|λmax(MN−1(σ))−
√

2| > ε) ≤ e−δN , (6.14)

(using N − 1 in place of N and multiplying both sides in the event of (6.6) by a factor to
deal with the small mismatch between matrix dimension N − 1 and variance N−1 of entries of
MN−1(σ) in (6.14)). Furthermore

E
[
|det (−η IN−1 + MN−1(σ))|2

]
≤ eNδ/2E [|det (−η IN−1 + MN−1(σ))|]2 , (6.15)

for large enough N by Lemma 6.3 since if h2 > ξ′′−ξ′ then η∗ >
√

2 by (4.23), dealing similarily
with the mismatch of matrix dimension and variance in (6.15). Using (6.14) and (6.15), for all
N large enough, the right-hand side of (6.13) is bounded by

e−Nδ/4(2ξ′′N2)
N−1

2

∫ η∗+ε

η∗−ε
E [|det (−η IN−1 + MN−1(σ))|] f ∂rHhN (σ)

N
√

2ξ′′

(η) dη

≤ e−Nδ/4E
[∣∣∣det

(
−∂rHh

N(σ)IN−1 +N
√

2ξ′′MN−1(σ)
)∣∣∣] .

Plugging this into (6.12), we obtain for N large enough

P (σ∗ ∈ Eε) ≤ E
[∣∣{σ ∈ Eε : ∇spH

h
N(σ) = 0

}∣∣]
≤ e−Nδ/4

∫
E
[∣∣∣det

(
−∂rHh

N(σ) +N
√

2ξ′′MN−1(σ)
)∣∣∣] f∇spHh

N (σ)(0) dσ

= e−δ/4NE[NN ]
N→∞−−−→ 0,

since limN→∞ E[NN ] = 2. Therefore for any ε > 0

P(|λmax(MN−1(σ∗))−
√

2| > ε) ≤ P (σ∗ ∈ Eε) + P

(∣∣∣∣∣∂rHh
N(σ∗)√
2ξ′′

− η∗

∣∣∣∣∣ ≥ ε

)
N→∞−−−→ 0,

by the previous display and (1.7). This proves (6.11) and thus (1.8).
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A Random matrix estimates
.

In the first part of the appendix, we prove several auxiliary results about GOE random
matrices that were used in the main part of the paper.

Proof of Lemma 2.1. The proof builds on the argument in Lemma 3.3 in [ABČ13]. Recall
that λN,a1 ≥ · · · ≥ λN,aN denote the ordered eigenvalues of GOEN(a). The distribution Qn,a of
(λN,ai )i≤N can be written expicitly, see [Meh04, Theorem 3.3.1]:

QN,a( dλ) =
N !

ZN(a)
e−

1
2a

∑N
i=1 λ

2
i ∆N(λ)1{λ1 < · · · < λN}

N∏
i=1

dλi, (A.1)

where (see [Meh04, (3.3.10)])

ZN(a) = (2π)N/2aN(N+1)/4

N∏
j=1

Γ
(
1 + j

2

)
Γ
(

3
2

) , (A.2)

and ∆N(λ) =
∏

1≤i<j≤N |λi − λj| is the van der Monde determinant. We write ZN = ZN(N−1)

and Z ′N−1 = ZN−1(N−1) and define TN = {(xi)Ni=1 ⊂ RN : x1 < · · · < xN}. Then,

E[det(xIN−1 + GOEN−1(N−1))] =

∫ N−1∏
i=1

|x− λi|QN−1,N−1(dλ)

=
(N − 1)!

Z ′N−1

∫ N−1∏
i=1

|x− λi| e−
N
2

∑N−1
i=1 λ2i ∆N−1(λ)1TN−1

(λ)
N−1∏
i=1

dλi

=
N∑
j=1

(N − 1)!

Z ′N−1

∫ N−1∏
i=1

|x− λi| e−
N
2

∑N−1
i=1 λ2i ∆N−1(λ)

× 1{λ1<···<λj−1<x<λj<···<λN−1}

N−1∏
i=1

dλi,

(A.3)

with the convention that λ0 = −∞ and λN = ∞. We note that ∆N−1(λ)
∏N−1

i=1 |x − λi| =
∆N(ν), with ν = ν(λ, x) = (λ1, . . . , λj−1, x, λj, . . . , λN). Having this in mind, since the dirac
delta function δ(x− y) enable us to exchange x and y freely, (A.3) is equal to

N∑
j=1

(N − 1)!

Z ′N−1

∫
δ(x− νj) exp

−N
2

∑
i∈{1,··· ,N}\{j}

ν2
i

∆N(ν)1TN (ν)
N∏
i=1

dνi

=
ZN

N Z ′N−1

e
N
2
x2

N∑
j=1

N !

ZN

∫
δ(x− νj) exp

(
−N

2

N∑
i=1

(νi)
2

)
∆N(ν)1TN (ν)

N∏
i=1

dνi

=
ZN
Z ′N−1

e
N
2
x2
∫ [

1

N

N∑
j=1

δ(x− νj)

]
QN,N−1( dν)

=
ZN
Z ′N−1

e
N
2
x2
∫ [

1

N

N∑
j=1

δ(x− λj)

]
QN,N−1( dλ), (A.4)
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where in the last line now λ ∈ RN . Since
∫
A

(∑N
i=1 δ (x− λi)

)
dx = |{1 ≤ i ≤ N | λi ∈ A}|, we

have

µN,N−1(A) = E

[∫
A

1

N

N∑
i=1

δ(x− λN,N
−1

i ) dx

]

=

∫ ∫
A

[
1

N

N∑
j=1

δ(x− λj)

]
dxQN,N−1( dλ)

=

∫
A

∫ [
1

N

N∑
j=1

δ(x− λj)

]
QN,N−1( dλ) dx,

which implies

ρN(x) = ρN,N−1(x) =

∫ [
1

N

N∑
j=1

δ(x− λj)

]
QN,N−1( dλ). (A.5)

Thus, the right-hand side of (A.4) is equal to ZN
Z′N−1

e
N
2
x2ρN(x).

Note that

ZN
Z ′N−1

=
√

2πN−N/2
Γ(1 + N

2
)

Γ
(

3
2

)
=
√

2N−(N−2)/2 Γ

(
N

2

)
,

where we have used Γ(3/2) =
√
π/2 and Γ(1 + x) = xΓ(x), which completes the proof.

To prove Lemma 2.2 we use a formula for ρN in terms of Hermite polynomials. Let φn(x) =

(2nn!
√
π)−

1
2Hn(x)e−

x2

2 , where (Hn(x))n≥0 are the Hermite polynomials.

Lemma A.1. It holds that

ρN(x) = N−1/2(AN(x) +BN(x)) (A.6)

where

AN(x) =
N−1∑
i=0

φi(
√
Nx)2 = NφN(

√
Nx)2 −

√
N(N + 1)φN−1(

√
Nx)φN+1(

√
Nx), (A.7)

and
BN(x) = SN(x) + αN(x), (A.8)

for

SN(x) =

√
N

2
φN−1(

√
Nx)JN(x), (A.9)

and

αN(x) =

φN−1(
√
Nx)

(∫∞
−∞ φN−1(t) dt

)−1

if N is odd,

0 if N is even
(A.10)
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where

JN(x) =

∫ ∞
−∞

sgn(
√
Nx− t)
2

φN(t) dt =

{
−sgn(x)

√
N
∫∞
|x| φN(

√
N t) dt if N is odd,

sgn(x)
√
N
∫ |x|

0
φN(
√
N t) dt if N is even.

(A.11)

Proof. This follows from [Meh04, (7.2.19), (7.2.27), (7.2.28), (7.2.30), (7.2.32) and pp 511]
(after translating to our normalization). The second equality of (A.7) can be found on [Meh04,
page 511], and the last identity is due to φN and HN being even functions for N even and odd
functions for N odd.

The proof of Lemma 2.2 is then based on applying the following bounds for Hermite poly-
nomials.

Lemma A.2. Fix δ > 0.

1. Uniformly for x ∈ [0,
√

2(1− δ)] we have

N−1/2AN(x)→ 1

2π

√
2− x2. (A.12)

2. Uniformly for x ∈ [0,
√

2(1− δ)] we have

φN(
√
Nx) = O(N−1/4) (A.13)

3. Uniformly for x ∈ [
√

2(1 + δ),∞), we have

φN(
√
Nx) =

eNΦ(x)g(x)√
4π
√

2N
(1 + o(1)) where g(x) =

∣∣∣∣∣x−
√

2

x+
√

2

∣∣∣∣∣
1/4

+

∣∣∣∣∣x+
√

2

x−
√

2

∣∣∣∣∣
1/4

. (A.14)

4. Uniformly for x ∈ [
√

2(1− δ),
√

2(1 + δ)],

φN(
√
Nx) = (2N)−1/4

(
(x+

√
2)(
√

2N2/3)1/4|f̂N(x)|1/4Ai(fN(x))(1 + o(1)))

−(x+
√

2)−1(
√

2N2/3)−1/4|f̂N(x)|−1/4Ai′(fN(x))(1 + o(1))
)
,

(A.15)

where Ai(x) is the Airy function, and fN(x) =
√

2N2/3(x −
√

2)f̂N(x) with an analytic
function f̂N such that, if δ is small enough then there are constants c < C such that
0 < c ≤ f̂N(x) < C <∞ uniformly in x ∈ [

√
2(1− δ),

√
2(1 + δ)].

5. It holds that∫ ∞
0

φN(x) dx ∼ (2N)−1/4,

∫
R
φN−1(x) dx =

{
2(2N)−1/4(1 + o(1)) if N is odd
0 if N is even.

(A.16)
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6. Uniformly for x ∈ R ∫ x

−∞
φN(x) dx = O(N−1/4), (A.17)

and
sup
x≥0
|JN(x)| = O(N−1/4). (A.18)

7. There exists c > 0 such that for N large enough,∫ ∞
√

2(1+δ)

|φN(
√
Nx)| dx ≤ e−cN . (A.19)

Proof.

1. The density of the expected empirical spectral distribution for the GUE ensemble (i.e. the
object corresponding to ρN for this ensemble) is precisely N−1AN(x) [Meh04, (6.2.10)].
It is well-known that this density (whether for GUE or GOE) converges to the semi-circle
law density 1

2π

√
2− x2 point-wise, and [Lin, Theorem, page 16] shows for the GUE that

this convergence is uniform on compact subsets of (−
√

2,
√

2).

The remaining estimates are from [DG07], where they are given for general orthogonal
polynomials in terms of the quantities cN , dN , hN(x) [DG07, (2.3), (2.4), (2.6)]. Results for
the standard Hermite polynomials are obtained by setting (in the notation of [DG07]) m = 1,
κ2 = 1, κk = 0 for k 6= 2. In this special case cN =

√
2N , dN = 0, hN = 4 by [Dei+99, pp 1501,

Remark 3.]. To obtain the estimates for our normalization of the GOE the variable x in the
formulas of [DG07] should furthermore be replaced by x/

√
2.

2. This follows directly from [DG07, pp 38 penultimate display].

3. This follows from [DG07, pp 28 first display] using (4.12).

4. This is due to [DG07, (4.9)-(4.10) and points (1), (2), (4), (5) on page 29].

5. This is due to [DG07, (4.14)] and the odd-/evenness of φN .

6. The first claim is due to [DG07, display after (4.15)] and the second follows immediately
using (A.11).

7. This is due to [DG07, (4.16)].

When using (A.15) we will also use the asymptotics of the Airy function and its derivative.

Lemma A.3. [AS64, pp 448–449] It holds that as y →∞,

Ai(y) ∼ 1

2
√
πy1/4

e−
2
3
y3/2 ,

Ai′(y) ∼ − y
1/4

2
√
π
e−

2
3
y3/2 ,

(A.20)

Ai(−y) =
1√
πy1/4

sin

(
2

3
y3/2 +

π

4

)
+ o(|y|−1/4),

Ai′(−y) = −y
1/4

√
π

cos

(
2

3
y3/2 +

π

4

)
+ o(|y|1/4).

(A.21)
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Due to the symmetry ρN(x) = ρN(−x) it suffices to consider x ≥ 0 in the proof of Lemma 2.2.
We furthermore consider ε > 0 arbitrary, and chose a sufficiently small δ > 0 such that

inf
x∈[
√

2(1−δ),
√

2(1+δ)]
Φ(x) > −ε/2. (A.22)

The claims of Lemma 2.2 then follow from the following two estimates.

ρN(x) =
exp (N Φ(x))

2
√
π N (x2 − 2)

1
4 (|x|+

√
x2 − 2)

1
2

+o(1)
uniformly for x ∈ [

√
2(1 + δ),∞), (A.23)

and
e−N

ε
2 ≤ ρN(x) ≤ eN

ε
2 , ∀x ∈ [0,

√
2 + δ), (A.24)

((A.23) implies (2.8) in the range [
√

2(1 + δ),∞) since

| ln(2
√
π N (x2 − 2)

1
4 (|x|+

√
x2 − 2))| ≤ ε|Φ(x)|N,

uniformly for x in the range, for N large enough). The proof of (A.24) is further subdivided
into 4 subcases:

1. x ∈ [0,
√

2− δ)

2. x ∈ [
√

2− δ,
√

2−N−4/7)

3. x ∈ [
√

2−N−4/7,
√

2 +N−4/7)

4. x ∈ [
√

2 +N−4/7,
√

2 + δ)

In the range [
√

2 + δ),∞) the term BN(x) is dominant, and is estimated using (A.14) to
obtain (A.23). In case 4 the term BN(x) remains dominant, but is now estimated instead using
(A.15).

In case 1 the term AN(x) is dominant and is estimated with (A.12). In case 2 the term
AN(x) remains dominant and is now estimated instead using (A.15).

Finally in the the intermediate case 3 the terms AN(x) and BN(x) are of similar order and
for the upper bound crudely bounding the Hermite polynomial terms using (A.15) suffices,
while for the lower bound we use a different method involving the formula (A.1) to compare
ρN in this range with ρN in the range [

√
2− δ,

√
2−N−4/7).

Proof of (A.23). If N is even we have JN(x) =
√
N
∫∞

0
φN(
√
Nx) dx−

√
N
∫∞
x
φN(
√
Nx) dx ∼

(2N)−1/4 uniformly by (A.11), (A.16) and (A.19), and thus by (A.8)-(A.10)

BN(x) ∼ (2N)1/4

2
φN−1(

√
Nx) uniformly for x ≥

√
2 + δ. (A.25)

For odd N , JN(x) decays exponentially by (A.11) and (A.19). Hence, SN(x)� φN−1(
√
Nx) by

(A.9). On the other hand αN(x) ∼ (2N)1/4

2
φN−1(

√
Nx) by (A.10) and (A.16), so (A.25) holds

also for odd N .
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We now derive an estimate for φN−1(
√
Nx) from the estimate (A.14) for φN(

√
Nx). To this

end define the function F (s) = s−1Φ(
√
sx). Then, by the mean value theorem, there exists

α ∈ [1, N
N−1

] such that

1

N − 1
F ′(α) = F

(
N

N − 1

)
− F (1) =

N − 1

N
Φ

(√
N

N − 1
x

)
− Φ(x).

We note that

F ′(α) = −α−2 ln

(√
αx+

√
αx2 − 2√
2

)
= −(1 + o(1)) ln

(
x+
√
x2 − 2√
2

)
,

where o(1) converges to 0 as α→ 1 or equivalently N →∞ uniformly for x >
√

2(1+δ). Since,
(|x+

√
2|1/2 + |x−

√
2|1/2)2 = 2(x+

√
x2 − 2), we obtain

g(x) =
|x+

√
2|1/2 + |x− 2|1/2

(x2 − 2)1/4
=

√
2(x+

√
x2 − 2)

(x2 − 2)1/4
.

Hence, by (A.14),

φN−1(
√
Nx) = φN−1

(
√
N − 1

√
N

N − 1
x

)

∼ e
(N−1)Φ(

√
N
N−1

x)
g(x)√

4π
√

2(N − 1)

=
eNΦ(x)+ N

N−1
F ′(α)g(x)√

4π
√

2(N − 1)
=

eNΦ(x)√
π
√

2N(x2 − 2)
1
4 (x+

√
x2 − 2)

1
2

+o(1)
. (A.26)

From this we immediately obtain

BN(x) =
(1 + o(1))eNΦ(x)

2
√
π(x2 − 2)1/4(|x|+

√
x2 − 2)

1
2

+o(1)

=
eNΦ(x)

2
√
π(x2 − 2)1/4(|x|+

√
x2 − 2)

1
2

+o(1)
.

Recalling (A.6) it thus only remains to show that AN(x) = o(BN(x)). By applying (A.14) for
φN−1, φN , φN+1 we get from (A.7)

AN(x) = NφN(
√
Nx)2 −

√
N(N + 1)φN−1(

√
Nx)φN+1(

√
Nx) = O(N2e2NΦ(x)),

which implies AN(x) = o(BN(x)), since Φ(x) ≤ −ε/2 for x ≥
√

2 + δ.

We next move to the region [
√

2 +N−4/7,
√

2 + δ). The argument is essentially the same as
for [
√

2(1 + δ),∞) except for using (A.15) instead of (A.14).
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Proof of (A.24) for x ∈ [
√

2 +N−4/7,
√

2 + δ). By (A.15) and (A.20), we obtain

φN(
√
Nx) = exp

(
−27/4

3
N(x−

√
2)3/2f̂N(x)3/2 +O(ln(N))

)
(A.27)

uniformly on
√

2(1 + N−4/7) ≤ |x| ≤
√

2(1 + δ). Hence, together with (A.19), it is easy to see
that

∫∞
|x| φN(

√
Nt) dt decays faster than any polynomial of N .

Hence, for N even, by (A.16), we have

JN(x) =
√
N

(∫ ∞
0

φ(
√
Nx) dx−

∫ ∞
|x|

φ(
√
Nx) dx

)
∼ (2N)−1/4,

as in the proof for x ∈ [
√

2 + δ,∞) above, so that still

BN(x) ∼ (2N)1/4

2
φN−1(x). (A.28)

For N odd we obtain αN(x) ∼ (2N)1/4

2
φN−1(x) by (A.10) and (A.16). Also since (A.11) gives

that |JN(x)| =
∣∣∣√N ∫∞|x| φN(

√
Nt) dt

∣∣∣ decays faster than any polynomial of N we obtain from
(A.9) that SN(x) = o(αN(x)), by (A.16), so that (A.28) holds also for odd N .

By (A.7) and (A.27) we get

|AN(x)| = exp

(
−211/4

3
N(x−

√
2)3/2f̂N(x)3/2 +O(ln(N))

)
� BN(x) = exp

(
−27/4

3
BN(x−

√
2)3/2f̂N(x)3/2 +O(ln(N))

)
→ 0.

Putting things together with (A.22), we have

e−Nε/2 ≤ 1

2
N−1/2BN(x) ≤ ρN(x) ≤ 2N−1/2BN(x) ≤ 1 ≤ eNε/2,

concluding the proof.

Proof of (A.24) for x ∈ [0,
√

2− δ). It holds that N−1/2AN(x) = eO(1) uniformly in this in-
terval by (A.12). Using (A.13) as well as (A.16) and (A.18), we obtain SN = O(1) and
αN(x) = O(1), so that N−1/2BN(x) = o(1), which gives the claim.

Proof of (A.24) for x ∈ [
√

2− δ,
√

2−N−4/7). By (A.15) and (A.21), we have

φn(
√
Nx) = O(N−1/4(x−

√
2)−1/4) = o(1), for n ∈ {N − 1, N,N + 1}, (A.29)

uniformly on x ∈ [
√

2(1 − δ),
√

2(1 − N−4/7)]. Hence |AN(x)|, |SN(x)|, |αN(x)| = O(N2) by
(A.7), (A.9), (A.18), (A.10) and (A.16). The upper bound follows directly.

For the lower bound we use that

AN(x) ≥
bx

2N
2

+N
1
3−

1
84 c∑

k=bx2N
2
c

φk(
√
Nx)2
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since x2N
2

+N
1
3
− 1

84 ≤ N . For k ∈ {bx2N
2
c, · · · , bx2N

2
+N

1
3
− 1

84 c} we have√
N

k
x =

√
Nx2

Nx2/2 +O(N1/3−1/84)
=
√

2 +O(N−
2
3
− 1

84 ),

which implies for fk from (A.15) that fk
(√

N
k
x
)

= o(1), and therefore by that estimate and
since Ai(0) > 0 as well as Ai′(0) < 0 we have

φk(
√
Nx) = φk

(
√
k

(√
N

k
x

))
≥ c′N−

1
12 Ai

(
fk

(√
N

k
x

))
≥ c′′N−

1
12 ,

with some constants c′, c′′ > 0. Since x2N
2

+N
1
3
− 1

84 ≤ N this implies

AN(x) ≥ N
1
3
− 1

84N−
1
6 = cN

13
84 ,

for some c > 0. Furthermore SN(x) = O(N1/7) in this interval by (A.9), (A.18) and (A.29).
Similarly αN(x) = O(N1/7) by (A.10), (A.16) and (A.29). Since N

13
84 � N

1
7 , we obtain that

|SN(x)|, |αN(x)| � AN(x) uniformly on x ∈ IN and hence,

ρN(x) ≥ N−1 for N large enough and x ∈ [
√

2(1− δ),
√

2(1−N−4/7)]. (A.30)

Proof of (A.24) for x ∈ [
√

2−N−4/7,
√

2−N−4/7). We write aN = N−4/7 and consider the
region x ∈ [

√
2(1 − aN),

√
2(1 + aN)]. Since for fN as in (A.15) it holds fN(x) = O(N c),

we have |Ai(fN(x))|, |Ai′(fN(x))| = O(N c) , uniformly for x ∈ [
√

2(1 − aN),
√

2(1 + aN)]
by (A.20) and (A.21). Hence φ(

√
Nx) = O(N c) uniformly using (A.15). This implies that

|AN(x)|, |SN(x)|, |αN(x)| = O(N c) using (A.7), (A.9), (A.18), (A.10), (A.16). Therefore,
ρN(x) ≤ eNε/2, uniformly on x ∈ [

√
2 − aN ,

√
2 + aN ] and for N large enough by (A.6).

This gives the upper bound bound.
To obtain the lower bound we compare ρN(x) to ρN(y) for y ≤

√
2−N−4/7 (a case already

covered above) as follows. From (A.1) and (A.5) we have

ρN(x) =
1

N

N∑
j=1

N !

ZN

∫
TN

δ(xj − x)e−
N
2

∑N
i=1 x

2
i ∆N(x)

N∏
i=1

dxi. (A.31)

For any z we can employ the change of variable xi → xi + x− z to obtain

ρN(x) =
(N − 1)!

ZN

N∑
j=1

∫
TN

δ(xj − z)e−
N
2

∑N
i=1(xi+x−z)2 ∆N(x)

N∏
i=1

dxi, (A.32)

noting that ∆N((xi)) = ∆N((xi + x− z)). Integrating both sides over z this gives

ρN(x) = (
√

2aN)−1 (N − 1)!

ZN

N∑
j=1

∫ √2(1−aN )

√
2(1−2aN )

dz

∫
TN

δ(xj − z)e−
N
2

∑N
i=1(xi+x−z)2 ∆N(x)

N∏
i=1

dxi

≥ (N − 1)!

ZN

N∑
j=1

∫ √2(1−aN )

√
2(1−2aN )

dz

×
∫
TN

δ(xj − z)e−
N
2

∑N
i=1 x

2
i−N(x−z)

∑
xi−N

2

2
(x−z)2 ∆N(x)

N∏
i=1

dxi,
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Let DN =
{

(xi)
N
i=1 :

∣∣∣∑N
i=1 xi

∣∣∣ ≤ NaN

}
. Since x ∈ [

√
2−aN ,

√
2 +aN ] we have |z−x| ≤ 4aN .

Hence we can further bound from below by

e−cN
2a2N

(N − 1)!

ZN

N∑
j=1

∫ √2(1−aN )

√
2(1−2aN )

dz

∫
DN∩TN

δ(xj − z)e−
N
2

∑N
i=1 x

2
i ∆N(x)

N∏
i=1

dxi

= e−cN
2a2NE

[
1

N
#
{
i ∈ {1, · · · , N} : λNi ∈ [

√
2(1− 2aN),

√
2(1− aN)]

}
1DN (λN)

]
≥ e−cN

2a2N

(∫ √2(1−aN )

√
2(1−2aN )

ρN(z) dz − P

(∣∣∣∣∣
N∑
i=1

λNi

∣∣∣∣∣ > NaN

))
,

where λN = (λNi )Ni=1 is the eigenvalues of GOEN(N−1) as before. Using (A.30) we then have∫ √2(1−aN )

√
2(1−2aN )

ρN(z) dz ≥ N−1(
√

2aN) ≥ N−2.

On the other hand, for GOEN(N−1) = (Aij)1≤ij≤N ,

P

(∣∣∣∣∣
N∑
i=1

λNi

∣∣∣∣∣ > NaN

)
= P

(∣∣∣∣∣
N∑
i=1

Aii

∣∣∣∣∣ > NaN

)
= O

(
e−

N2a2N
2

)
,

since (Aii) are centered Gaussian random variables of variance N−1. Therefore, we obtain

ρN(x) ≥ 1

2N2
e−cN

2a2N =
1

2N2
e−cN

6
7 ≥ e−εN .

B Covariances of the Hamiltonian
The next lemma gives the covariances of the Hamiltonian HN (without the external field). For
its proof see [AB13, Lemma 1] or [BSZ20, Appendix A].

Lemma B.1. For 1 ≤ i ≤ j ≤ N − 1, 1 ≤ ` ≤ k ≤ N − 1 and σ ∈ SN−1, we have:

E[HN(σ)HN(σ)] = N,

E[∂iHN(σ)HN(σ)] = 0,

E[∂ijHN(σ)HN(σ)] = 0,

E[∂iHN(σ)∂`HN(σ)] = N ξ′ δi`,

E[∂ijHN(σ)∂`HN(σ)] = 0,

E[∂ijHN(σ)∂`kHN(σ)] = N ξ δi`δjk(1 + δij),

E[∂rHN(σ)∂rHN(σ)] = N (ξ′ + ξ′′),

E[HN(σ)∂rHN(σ)] = N ξ′,

E[∂iHN(σ)∂rHN(σ)] = 0,

E[∂ijHN(σ)∂rHN(σ)] = 0.

Proof. Use [AT07, (5.5.4)] with H = HN and C(σ, τ) = ξ(σ · τ).
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